
DTMF Encoding & Decoding
An application of The Goertzel Algorithm

0 500 1000 1500 2000
−120

−100

−80

−60

−40

−20

0

20

Frequency (Hz)

S
ig

na
l P

ow
er

 (
dB

)

Power Spectrum for Digit 7 − 852 Hz & 1209 Hz

Electronics IV (Honours) Project
1994

by Steven J. Merrifield
Supervised by Dr. Chris Dick

This thesis was awarded the Nokia Telecommunications Electronic

Engineering Award for the Best Final Year Thesis in the Faculty of Science

and Technology for the year 1994.

School of Electronic Engineering

La Trobe University

Bundoora 3083

Victoria

AUSTRALIA

Contents

Acknowledgements 4

1 Introduction 5

2 DTMF 6

2.1 Applications . 7
2.2 Encoding . 7
2.3 Decoding . 7

2.3.1 The Goertzel Algorithm 8
2.3.2 Software Description of the Goertzel algorithm 10

3 Hardware Development 14

3.1 System Overview . 14
3.1.1 TMS320C25 . 15
3.1.2 EPROM . 17
3.1.3 SRAM . 17
3.1.4 USART . 17
3.1.5 PALs . 18
3.1.6 AIC . 19

3.2 System Memory Maps . 21
3.2.1 IO Space Memory Map 21

3.3 Wait States . 22
3.3.1 EPROM Wait States 23
3.3.2 USART Wait States 23
3.3.3 Ready Generation . 24

4 Software Development 25

4.1 EPROM Software Development 25
4.1.1 Creating EPROM files 26

4.2 PRAM Down Loader . 27
4.2.1 Down Loader Protocol 27

1

CONTENTS 2

4.2.2 Echo Testing . 27
4.2.3 PRAM Down Loader Software Development 28

4.3 Programming the USART . 29

5 Testing and Verification 30

5.1 TMS320C25 and EPROM . 30
5.2 IO Ports . 30
5.3 USART Clock . 30
5.4 USART . 31
5.5 DTMF Encoder Testing . 31
5.6 DTMF Decoder Testing . 32

6 Conclusion and Future Development 33

A AIC Transmit Interrupt Service Routine 35

B Linker command files 36

B.1 EPROM development . 36
B.2 PRAM down loader development 37

C Simulator command file 38

D PAL Equations 40

D.1 Wait State Generation . 40
D.2 IO Decoding . 41

E Source Code 43

F Schematic Diagrams 65

List of Figures

2.1 DTMF Keypad . 6
2.2 Signal flow graph for first order recursive computation of the

DFT . 9
2.3 Signal flow graph for second order recursive computation of

X(k) . 10
2.4 Parallel second order filter bank for selective DFT computation 11
2.5 Flowchart for DTMF decoder 13

3.1 Photograph of the TMS320C25 DSP system 15
3.2 System Block Diagram . 16
3.3 USART Write Cycle . 18
3.4 USART Read Cycle . 19
3.5 AIC Initialisation Timing . 21
3.6 System Memory Maps . 22
3.7 Ready Generation . 24

3

Acknowledgements

I wish to thank my supervisor, Dr. Chris Dick, for his invaluable assistance
throughout the year. His advice and encouragement was a great asset, and
without it, this project would never have come to fruition. Chris’ generosity
with his time, and provision of data sheets and manuals was greatly appre-
ciated. Mr. Geoff Liersch also deserves a big thank-you, providing a great
deal of assistance with both hardware and software debugging. His help with
configuring the Tektronix logic analyser was invaluable, and his knowledge
of microprocessor systems is incredible. Thanks Lurch! I would also like to
thank Steve Lutrov, of The Software Parlour BBS, for providing the low-level
C routines used in the PC front-end software.

4

Chapter 1

Introduction

This project involved the implementation of a fixed point DSP processor to
send and receive DTMF tones. The TMS320C25 by Texas Instruments was
used to create a general purpose development system, utilising ROM, RAM,
and a universal serial interface. This system could then be used for a number
of digital signal processing applications, but DTMF encoding/decoding was
chosen in this case. The advantages of implementing a DTMF coding routine
with a DSP processor are its speed and its flexibility. A dedicated DTMF
chip is hard-wired to send and receive only a certain number of fixed tones.
The project presented here, on the other hand, can send and receive any
number of tones simply by altering the keypad lookup table. This results
in a much wider application range, and offers increased security for data-
sensitive applications.

5

Chapter 2

DTMF

DTMF, or Dual Tone Multi Frequency, is a method of sending and receiving
control information over a communications channel. The reader is probably
most familiar with DTMF tones as heard on a modern push-button tele-
phone. Each digit on the keypad is encoded as a DTMF tone, which is then
transmitted over a medium, and decoded at the receiving end. A keypad as
shown in Figure 2.1, is usually used to generate the required DTMF tone.
Each key has associated with it a row frequency, and a column frequency.
When a key is pressed, the encoding circuitry mixes together these two fre-
quencies, and transmits the result. The receiver then decodes the tone back
into its two respective frequencies, and then the processing circuit will act
accordingly.

1 2 3

4 5 6

7 8 9

#* 0

A

B

C

D

1209 1336 1477 1633

697

852

941

770

Figure 2.1: DTMF Keypad

6

CHAPTER 2. DTMF 7

This project reads digits entered on an IBM PC keyboard, encodes the
digit into its relevant tones, and transmits it over a cable. The receiver
then decodes the tones and sends it back to the IBM PC where the digit is
displayed on a monitor.

2.1 Applications

Typically, DTMF coding is used by the telecommunications industry for
control applications, such as exchange signaling, and remote process control.
DTMF coding systems are also used widely in other scientific areas. Applica-
tions such as remote data acquisition from a mountain top weather station,
or electronic banking, where a customer sends information using a telephone
keypad. The applications of DTMF coding are many and varied, but all
require a transmitter which encodes the required tones, and a receiver which
decodes the tones into relevant information.

2.2 Encoding

The DTMF encoding program implemented on the TMS320C25 used two
look up tables. One to determine which key was pressed on the keyboard, and
hence, which tones to generate, and secondly, a look up table of sine values
required to synthesize the necessary frequencies. The sine wave generation
routine was based on that detailed in [3], but was modified slightly for the
TMS320C25. It was also necessary to replicate the generation section of
code in order to produce two sine waves. These two waves were then added
together, and sent to the analog interface circuit ready for transmission.

2.3 Decoding

Decoding DTMF tones involves the detection of two specific frequencies. As
the DTMF encoding scheme uses a 4x4 frequency matrix, the detector need
only search for these eight particular tones.

The correct detection of a valid DTMF digit must ensure that there is a
minimum energy value at both of the required frequencies. If for example,
the detector only finds an energy peak at one of the required frequencies,
the tone received was not a valid DTMF digit. The detection of a single
frequency could be caused by a multitude of occurrences, ranging from human
speech through to random noise. In this particular application, the Goertzel
algorithm was used for detection.

CHAPTER 2. DTMF 8

2.3.1 The Goertzel Algorithm

The Goertzel algorithm is a special case of the Discrete Fourier Transform
(DFT), where the DFT defining equation is given by:

X(k) =
N−1∑

i=0

x(i)W ik

N
k = 0, . . . , N − 1 (2.1a)

where

WN = e
−j2π

N (2.1b)

The Goertzel algorithm makes uses of the fact that the phase factors,
W k

N
, are periodic, and thus the DFT equation can be expressed as a linear

filtering operation.

The transfer function for a single pole filter is defined as:

Hk(z) =
1

1 − W−k

N
z−1

=
N(z)

D(z)
(2.2)

This filter has a pole on the unit circle, at the frequency ωk = 2πk

N
. Thus

the entire DFT can be computed by applying the input data to a bank of
single pole parallel filters, each having a pole at the corresponding DFT
frequency. The filter recurrence relation can be determined by taking the
inverse z-transform of (2.2) If we let X(z) be the z-transform of the filter
input sequence, and Yk(z) be the z-transform of the filter output, then

Hk(z) =
Yk(z)

X(z)
=

1

1 − W−k

N
z−1

(2.3)

where the k subscript denotes the kth DFT coefficient.
By re-arranging (2.3) and taking the inverse z-transform, we arrive at

yk(i) = x(i) + yk(i − 1)W−k

N
(2.4)

This is the defining equation for a single pole resonator, with output yk(i).
An N point DFT could thus be implemented by using a parallel arrangement
of such filters, where each filter calculates a single DFT coefficient. The signal
flow diagram for such a filter is shown in Figure 2.2.

The filter shown in Figure 2.2 must calculate a complex multiplication for
each recursive pass. This is inefficient, and can be eliminated by transforming
the single pole filter into a double pole resonator. The transfer function for
such an implementation is given by

CHAPTER 2. DTMF 9

y (i)kx(i)

W

z-1

-k
N

Figure 2.2: Signal flow graph for first order recursive computation of the
DFT

Hk(z) =
1 − W k

N
z−1

1 − 2 cos(2πk

N
)z−1 + z−2

(2.5)

The direct form II realisation of this filter can be represented by the difference
equation

vk(i) = 2 cos(
2πk

N
)vk(i − 1) − vk(i − 2) + x(i) (2.6)

yk(i) = vk(i) − W k

N
vk(i − 1) (2.7)

and is shown in Figure 2.3.

The recursive relation, vk(i) is calculated for i = 0, 1, . . . , N −1, but the final
equation is only calculated once, when i = N .

The Goertzel algorithm is more efficient when only a small number of
points need to be calculated. In this case, a parallel arrangement of Goertzel
second order filters, as shown in Figure 2.4, is usually implemented. For
DTMF detection, it is only necessary to implement the filters which corre-
spond to the required eight frequencies. By doing this the Goertzel algorithm
makes a huge time saving over a more conventional DFT decoder. If a DFT
decoding scheme was implemented, using a transform length, of say 256, then
all 256 points would need to be calculated in order to determine the required
eight outputs. The values which are not required are then discarded - a huge
waste of processing time. The Goertzel algorithm, on the other hand, only
calculates the required coefficients, resulting in a much more efficient process.

CHAPTER 2. DTMF 10

Perform this calculation Only perform this
calculation for i=Nfor i = 0,1,...,N-1

2cos(2.pi.k/N)

-1

x(i) X(k)kv (i)

-W

-1
z

-1
z

N
k

Figure 2.3: Signal flow graph for second order recursive computation of X(k)

2.3.2 Software Description of the Goertzel algorithm

The Goertzel algorithm takes the form of a series of second-order infinite
impulse response filters. As can be seen in Figure 2.3, the signal flow graph
is divided into two separate sections. The left hand part which includes the
two delay elements, and the right hand side where there is no feedback. For
DTMF decoding, it is really only the last iteration (N − 1) of the algorithm
which is required. As a result, there is no need to execute the right hand
side until the last iteration. What is not obvious though, is the fact that the
multiplier of the left hand side, 2 cos(2πk

N
), is the same as the right hand side

constant, W k

N
, when the absolute magnitudes are taken. W k

N
is a complex

number, and the left hand side multiplier is a real number. However, the
software calculates the magnitude squared of the output, hence the Goertzel
algorithm adapted to DTMF decoding executes more quickly, and occupies
less memory space since there is a reduction in the number of variables re-
quired.

This algorithm is compact and requires only one real coefficient for each
frequency to determine its magnitude. In order to extract both magnitude
and phase, complex coefficients are required, and hence more in-depth pro-
gramming, but fortunately, DTMF tones may be decoded simply by extract-
ing the magnitude of the two respective frequency components, and ignoring
their phase. In addition to this, the program processes each sample as it

CHAPTER 2. DTMF 11

Goertzel Filter

Goertzel Filter

Goertzel Filter

Goertzel Filter

Goertzel Filter

Goertzel Filter

Goertzel Filter

Goertzel Filter

k=18

k=20

k=22

k=24

k=31

k=34

k=38

k=42

X(18) 697Hz

X(20) 770Hz

X(22) 852Hz

X(24) 941Hz

X(31) 1209Hz

X(34) 1336Hz

X(38) 1477Hz

X(42) 1633Hz

x(i)

i=0,...,N-1
N input samples

Figure 2.4: Parallel second order filter bank for selective DFT computation

arrives, instead of waiting for a complete set of samples.

The procedure used to implement the Goertzel algorithm is shown in Fig-
ure 2.5. After the main DFT loop has processed 205 samples and calculated
the energy at each of the eight keypad frequencies, it then performs a series
of tests. These tests are designed to discriminate between true DTMF tones,
and other signals which may have similar spectras. Since the decoder pro-
cesses its input data continuously, it does not know if a digit is valid until
after it has processed all the data, and performed these tests. The first test
checks to see if the decoded digit has changed since the last pass. If it has
changed, then it moves the last digit into the second last position, and the
current digit into the last position and repeats the DFT. If the current digit

CHAPTER 2. DTMF 12

was the same as the last digit, it then compares it with the second last digit.
If these are also the same, it concludes the digit has not changed, and so
branches back to the top of the algorithm. If however, the current digit is
not the same as the second last digit, the program concludes that the digit
is a new tone, and sends it back to the PC to be displayed. It then moves
the last position into the second last position, and the current digit into the
last position, and repeats the DFT.

It was also necessary to check the signal strength of the decoded tone
to ensure that random interference or white noise had not been decoded.
This was simply a matter of testing the relevant column and row energies
to determine if they exceeded a pre-determined value. If the energy was less
than this level, then the program branched back to the start of the algorithm.

CHAPTER 2. DTMF 13

MAIN DFT LOOP/

GOERTZEL

ALGORITHM

PROCESSED

205 SAMPLES?

CALCULATE

ENERGY AT

EACH FREQ.

FIND ROW &

COLUMN

PEAKS

READ SAMPLED

DATA FROM AIC

HAS THE

DIGIT

CHANGED?

WRITE DIGIT

TO USART/PC

SIGNAL

STRONG

ENOUGH?

START

N

Y

N

Y

N

Y

Figure 2.5: Flowchart for DTMF decoder

Chapter 3

Hardware Development

The DTMF decoder prototype was constructed using a wire-wrap technique.
This construction method has a number of advantages over a PCB implemen-
tation. It allows an infinite number of changes and alterations to be made, it
is much faster to build, and easier to debug since a color coding scheme can
be implemented. In this case, the address bus and data bus were wired to
correspond to the standard resistor color codes, ie, A0 was black, A1 brown,
and so on.

Extensive use was made of bypass capacitors on the supply rails, and close
to each IC. This was done to alleviate any possibility of ground-bounce, or
switching transients, affecting the correct circuit operation. Without such
bypassing, glitches would have been likely to occur.

3.1 System Overview

The DSP development system was based on Texas Instrument’s TMS320C25
fixed point processor. This processor was designed specifically for digital sig-
nal processing applications, and has specialised internal hardware for specific
DSP operations. This approach has the advantage of being much faster than
a software based approach and makes programming DSP specific applications
much simpler.

To make the development system fully versatile, a full complement of
program RAM, data RAM and ROM was provided on board. A bank of
diagnostic LEDs was also provided as a visual indication of a program’s
status.

A development system is not very useful if an EPROM must be pro-
grammed and erased every time a new program is required, so a serial inter-
face to an IBM PC was provided to allow programs to be down loaded from

14

CHAPTER 3. HARDWARE DEVELOPMENT 15

the PC directly to the TMS320C25’s external program RAM.
In order to transmit and receive DTMF tones, an Analog Interface Cir-

cuit, or AIC, was connected to the peripheral serial port of the TMS320C25.
This converted the digital sequence of data from the processor into analog
signals for transmission, as well as receiving an analog signal, and converting
it back into the digital domain for processing.

Figure 3.1: Photograph of the TMS320C25 DSP system

3.1.1 TMS320C25

The Texas Instrument’s TMS320C25 is a second generation digital signal
processor, with a specialised DSP instruction set, and a Harvard-type archi-
tecture. This style of architecture has separate program and data address
spaces, providing an enormous speed and flexibility advantage over other
general purpose processors.

Some of the key features of the TMS320C25 are listed below.

• 100ns instruction cycle time

• 544 word on-chip data RAM

CHAPTER 3. HARDWARE DEVELOPMENT 16

GENERATOR

WAIT STATE

32k EPROM
16k

PROG. RAM DATA RAM

16k

DTMF

ANALOG

SIGNALS
RS-232 SERIAL

INTERFACE

TMS320C25

DECODER
ADDRESS

UART AIC

Figure 3.2: System Block Diagram

• 32 bit accumulator

• Block moves for easy data/program space transfer

• Eight level on-chip hardware stack

• Automatic provision for one wait state generation

• Serial port for direct codec/AIC interface

• Specific DSP instructions for bit-reversal, adaptive filtering etc.

These features, along with many others make the TMS320C25 particularly
attractive for signal processing applications. At the same time though, gen-
eral purpose applications are greatly enhanced by the large address spaces,
multiple interrupt structure, serial port, provision for external wait states,
and the capability for multi processor interfacing and direct memory access.

CHAPTER 3. HARDWARE DEVELOPMENT 17

3.1.2 EPROM

The TMS320C25 required that the ROM be mapped into the bottom section
of program memory, since the boot vectors and interrupt table occupy ad-
dresses 0x0000 through to 0x0020. The 27C256-12 is a 32k x 8 EPROM with
an access time of 120ns. Two of these devices were necessary to construct
32k of EPROM space, since the TMS320C25 has a 16 bit data bus. With
these particular EPROMs, the data output turn off time was too slow, and
so bus clashes would have resulted. This potential problem was overcome by
the addition of 74F244 buffers which disabled the EPROM data bus when it
was not selected.

3.1.3 SRAM

Static RAM was chosen for the TMS320C25 development system because of
it’s fast access time, and ease of use. Dynamic RAM, although less expen-
sive, is more difficult to use since it requires refreshing at regular intervals.
SRAMs, on the other hand, are virtually foolproof. The CY7C166-25, by
Cypress Semiconductors, is a 16k x 4 bit SRAM, with an access time of
25ns. With a 16 bit bus, four of these IC’s were required to make a full 16k
of addressable memory space.

The memory configuration of the TMS320C25 is such that program space
and data space are mapped into different areas. As this is the case, 4 x
CY7C166’s were used for data memory, and 4 x CY7C166’s for program
memory.

3.1.4 USART

The Intel 8251A Universal Synchronous / Asynchronous Receiver and Trans-
mitter was chosen to interface the TMS320C25 development system with a
standard IBM PC serial port. This USART operates at asynchronous baud
rates from 150 baud to 19200 baud, depending on the clock input. The clock
circuit chosen was a simple crystal oscillator, running at 2.4576MHz, then
divided by 2,4,8,16, etc. using a 74HC4046 12-bit binary counter. The ac-
tual baud rate was adjusted using a DIP switch to set the appropriate clock
speed.

A 74LS373 8 bit latch and a 74LS245 buffer were necessary to isolate the
main system data bus from the USART data bus. The USART required that
the data be held for a minimum of tWD = 20ns after WR had gone high. The
latch was used to hold the data on the bus until the next write cycle, thus
satisfying the USART requirements. See Figure 3.3. Here the R/W line from

CHAPTER 3. HARDWARE DEVELOPMENT 18

the TMS320C25 goes low, followed soon after by the IO select line. UARTW
was generated using a PAL22V10, and the latch enable input (LE) to the
74LS373 is simply an inversion of the UARTW line. Hence, when writing to
the USART, the 74LS373 will allow data to flow through, latching the data
on the falling edge of LE.

IO

R/W

LE

UARTW

Figure 3.3: USART Write Cycle

During a read cycle, the latch outputs must be driven to a high impedance
state, and the 74LS245 buffer then transfers data from the USART data
bus to the main system data bus. The timing diagram for this operation is
shown in Figure 3.4. The output enable input (OE) to the 74LS373 was tied
directly to the R/W line from the TMS320C25. Thus, when the processor is
executing a read from the USART, the buffer outputs will be tri-stated, and
data can be read from the USART bus, without the possibility of conflictions.
The UARTR line was generated in the same PAL as the UARTW line.

3.1.5 PALs

PALs were used in the place of discrete logic devices for several reasons.

• The design can be altered very easily by changing one IC, rather than
reconnecting a large number of discrete ICs.

• A PAL occupies much less board space than a collection of discrete
ICs.

• The propagation delay through a PAL is very much smaller than that
due to a chain of discrete ICs, resulting in faster operation.

• Construction is simpler.

CHAPTER 3. HARDWARE DEVELOPMENT 19

IO

R/W

UARTR

OE

Figure 3.4: USART Read Cycle

Initially, a PAL16L8 was used for address decoding and READY generation,
and a PAL16R4 for IO addressing. Both these ICs are not very versatile, in
that they are not reprogrammable. It was inevitable that changes needed to
be made, and this necessitated a new PAL. After several changes, it was de-
cided to remove both PALs, and replace them with a more modern, erasable
PAL22V10.

One PAL22V10 was used for generating the READY signal and handled
all PRAM, DRAM, and EPROM control lines. A second PAL22V10 was used
for implementing the USART control lines, as well as providing a latched
output for the diagnostic LEDs.

The software package PALASM, was used for creating the JEDEC files to
be down loaded to a PAL programmer. A fairly significant amount of time
was spent learning how to use this program, which can be used to simulate
the output of a PAL by configuring the appropriate inputs. A design can
therefore be fully debugged before programming the PAL.

3.1.6 AIC

The TLC32042 Analog Interface Circuit includes both analog to digital, and
digital to analog converters in the one package. This device incorporates a
bandpass switched capacitor antialiasing filter, a 14 bit conversion process
for both the ADC and DAC, and a lowpass switched capacitor output recon-
struction filter. In addition, the AIC also provides a direct serial interface to
the TMS320C25.

Use of this AIC greatly simplified the hardware necessary to provide an
analog interface to the DSP development system.

CHAPTER 3. HARDWARE DEVELOPMENT 20

AIC Initialisation

In order to set the sampling frequency to 8kHz, the internal registers of
the AIC must be programmed. The programming sequence differs vastly
from normal data transmission. In order to access the internal registers, the
bottom two bits of a primary data transfer must be set, ie, the program must
send 03h. The AIC recognises that the bottom two bits are set, and then
initialises secondary communication. It is during secondary communication
that the actual initialisation data must be sent from the TMS320C25 to the
TLC32042.

This process proved to be quite a stumbling block during the development
of the DTMF decoding system. Normal primary communications could be
initialised, and data transferred to the DAC registers without any problems,
but the internal registers could not be accessed using secondary communica-
tions.

By sending 03h as the primary data, secondary communication mode was
then entered, but the initialisation data was not being sent. This could be
seen very easily by triggering the logic analyser at the commencement of
primary transmission. It was observed that the same data, ie, 03h, was also
being sent as the initialisation data.

This meant that the code which loads the secondary data was not ex-
ecuting fast enough, since the next interrupt occurred before the data was
ready. The specifications for the TLC32042 required that the secondary data
be sent 4 shift clock cycles after the conclusion of the primary transmission.
With a 40MHz clock this allows a maximum of 16 CPU clock cycles in which
to branch to the interrupt service routine, and prepare to transmit the data.

An interrupt occurs as the last bit is transferred from the TMS320C25 to
the AIC. When an interrupt occurs, the processor branches to the interrupt
vector table in ROM, which then points to a replica table in data RAM, and
this points to the actual service routine. The first instructions in the ISR
must save the status registers and accumulator, then transmit the data. This
whole procedure must take place within the allowed 16 clock cycles.

The ROM in the development system operates with one wait state, further
increasing the time taken to process an interrupt. The total time required
when all these considerations were taken into account was 17 clock cycles,
which is only slightly greater than that allowed. This explains why the
secondary data was not being written consistently. The initialisation data
could be sent on rare occasions, since the setup time was very close to the
maximum allowed, although such a system is not very reliable.

To overcome this problem, it was necessary to divide the AIC master
clock frequency using a flip-flop circuit, which would increase the amount

CHAPTER 3. HARDWARE DEVELOPMENT 21

of time available for processing the interrupt. By doing this, we effectively
now have 32 clock cycles in which to prepare for data transmission, and the
program is able to service the interrupt within this time period.

Primary Data Secondary

Setup Time

XINT

DX

~FSX

Figure 3.5: AIC Initialisation Timing

The interrupt code used initially was adapted from [10], and would not work
at all. It was eventually concluded that the one wait state in the ROM
was the problem, as the example code must have used zero wait states on
all memory accesses. The extra delays in the branches from the one wait
state ROM to the RAM were causing the program to exceed the maximum
allowable delay of 16 CPU clock cycles. The time taken by the interrupt
service routine in [10] was exactly 16 clock cycles, although this was not
documented, leading future users to believe that their code was adaptable
to third party applications. In actual fact, the frequency of the master clock
input will probably need to be reduced.

3.2 System Memory Maps

The TMS320C25 can address a total of 64k of program space and 64k of data
space through the use of separate PS and DS control lines. In this system,
there is only 16k of program RAM and 16k of data RAM installed, although
both these areas are mapped into 32k segments. This results in images, and
so anything addressed in the upper 16k will be mapped to the lower half of
the segment.

3.2.1 IO Space Memory Map

The IO space has a very simple address map, since there are only four LEDs
and the USART in this space. The LEDs were mapped into the lower four

CHAPTER 3. HARDWARE DEVELOPMENT 22

0000

0020

001F

7FFF

8000

BFFF
C000

007F
0060 Block B2

0200

02FF

0300

03FF

Block B0

Block B1

0400

3FFF

4000

FFFF FFFF

Not Used

External

DRAM

PRAM

Not Used

ROM

Interrupts Page 0

Pages 4-5

Pages 6-7

Pages 8-128

PROGRAM SPACE DATA SPACE

Figure 3.6: System Memory Maps

addresses (0-3), with the USART data register at address 4, and the con-
trol/status register at address 5. Again, images will result since incomplete
address decoding was not implemented, although this is not significant.

3.3 Wait States

Wait states were necessary when interfacing the relatively fast TMS320C25
with slower peripheral ICs. In this case, wait states were required for access-
ing the EPROMs, and the USART. Both these peripheral chips have slow
access times (relative to the processor), and hence the processor must be told
to wait until the peripheral chip has finished doing its job, either reading a
program from ROM, or transferring data via the PC serial interface.

The number of wait states depends on the total access time required.
This time must include not only the relevant IC access times, but also any
propagation delays in address decoding logic, as well as the logic necessary
to generate the READY signal.

The number of wait states, N , can be found using the equation :

[100(N − 1) + 40]ns < ta ≤ (100N + 40)ns (3.1)

CHAPTER 3. HARDWARE DEVELOPMENT 23

A3 A2 A1 A0 Address Device

X X 0 0 0 LED 0
X X 0 1 1 LED 1
X X 1 0 2 LED 2
X X 1 1 3 LED 3
X 1 0 0 4 USART data in/out register
X 1 0 1 5 USART control/status register

Table 3.1: IO Address Map

where ta is the total access time as outlined above.

3.3.1 EPROM Wait States

The worst case, total access time required by the EPROM circuitry was cal-
culated as being 140ns, allowing the use of one wait state. The TMS320C25
provides a microstate complete output which, when gated with the relevant
control lines, provides the automatic generation of one wait state. This
allowed for a much simpler design, and reduced the amount of hardware
required.

3.3.2 USART Wait States

The USART has a delay of 200ns from when the read line goes low, to when
the data appears on the bus. This delay time, along with the decoding and
latch/buffer logic delays meant that the total access time was 252ns. Hence,
three wait states were required.

A number of difficulties were encountered in implementing three wait
states. A PAL22V10 was chosen for this design, but this IC only contains D
type flip-flops, whereas the example wait state generator shown in [5] used JK
flip-flops. A significant amount of time was spent trying to adapt the example
to the required circuit, but with no success. It was eventually decided that
the example was proving too difficult to adapt to the PAL22V10, so another
tact was necessary.

The final PAL equation was chosen by drawing the necessary waveforms,
and using Karnaugh maps to design the required circuitry. The inputs were
then setup, and the design was simulated using PALASM.

The waveforms associated with the wait state generator are shown in
Figure 3.7. The Q1, Q2, and Q3 waveforms are internal to the PAL, and

CHAPTER 3. HARDWARE DEVELOPMENT 24

the UART waveform incorporates the relevant chip select lines, address lines
and strobe.

3.3.3 Ready Generation

The READY input to the TMS320C25 must go high to end the current cycle.
As shown in Figure 3.7, READY is normally low, but 2 1

2
clock cycles after

the USART is accessed, READY goes high. This timing delay is due to the
wait state generator. The TMS320C25 then polls the READY input, detects
a high, and ends the current cycle on the next positive edge of CLKOUT2.
Hence, the USART line changes state 3 1

2
clock cycles after it began.

CLKOUT2

UART

Q1

Q2

Q3

READY

Figure 3.7: Ready Generation

Chapter 4

Software Development

The development of software for the TMS320C25 was aided by a collection
of PC software tools, which provided a convenient platform for assembling,
linking, and simulating programs. Initially there were various problems with
these tools. Unfortunately, Texas Instruments have released several versions
of these tools, and they appear to be incompatible. The initial development
of the TMS320C25 assembly language programs was stunted due to mixing
several versions of the tools together. It is important that a complete revision
of tools and printed manuals be undertaken when upgrading to a more recent
version.

4.1 EPROM Software Development

The initial software development cycle involved writing test programs in as-
sembly language, linking to an object file, then converting this file format
into a form suitable for down loading to an EPROM. This cycle is a time
consuming one, since an EPROM must be erased for approximately 30 min-
utes before it can be reprogrammed. In order to avoid errors which could
lengthen this development cycle, an assembly language simulator was used
to verify that the source code was indeed correct before programming the
EPROMs.

The simulator was found extremely useful, since it allowed single-stepping
through instructions, and displayed the current contents of all registers, the
accumulator, and the data memory contents. By tracing through a program,
any errors could be quickly located, and corrected. Use of such a simulator
is highly recommended, although it should not be taken as gospel.

There were several occasions when a program worked in the simulator, but
would not work when implemented in hardware. Eventually it was traced to

25

CHAPTER 4. SOFTWARE DEVELOPMENT 26

a software error, which was not showing up in the simulator. The simulator
initialised unused data bits to zero, so when for example, a read from the
USART is performed (an 8 bit bus), the simulator would set the top 8 bits
to zero. In actual fact, the hardware sets these bits to FFh, so when ORing
the read data into the accumulator, the top 8 bits would get overwritten.

This type of occurrence should be taken into account if something appears
to work when simulated, but not when actually implemented.

4.1.1 Creating EPROM files

The creation of files suitable for down loading to an EPROM requires a num-
ber of steps. The following commands assume the assembly language source
code has been written in an ASCII text editor, and is called EXAMPLE.ASM

C:\> dspa -lc EXAMPLE

This takes EXAMPLE.ASM and produces EXAMPLE.OBJ. The -lc parameters
tell the assembler to produce a listing file, and to ignore case.

C:\> dsplnk EXAMPLE.OBJ EXAMPLE.LNK -o EXAMPLE.OUT

-m EXAMPLE.MAP

This links EXAMPLE.OBJ with EXAMPLE.LNK to produce EXAMPLE.OUT, and the
memory map file, EXAMPLE.MAP. The linker command file defines the memory
locations of the program, data and io-spaces, and depends on the physical
memory map of the hardware system.

C:\> dsprom -i EXAMPLE.OUT

This takes EXAMPLE.OUT and produces EXAMPLE.HI and EXAMPLE.LO files
using the Intel hex file format.

C:\> hexobj02

This has to be run twice, and takes EXAMPLE.LO, and produces EXAMPLE.L

using Intel hex file format. Likewise for EXAMPLE.HI The newly created files
EXAMPLE.L and EXAMPLE.H are then in a suitable format for programming
into an EPROM.

CHAPTER 4. SOFTWARE DEVELOPMENT 27

4.2 PRAM Down Loader

Since the EPROM software development cycle is very tedious, a down loader
program was written which allowed new programs to be sent via the serial
port and run from program RAM. The obvious advantage of this technique is
it’s speed. There is no longer any delay time while programming and erasing
EPROMs.

This technique involved the creation of two sets of software - the assembly
language software programmed into the EPROM, and a suite of Turbo C
programs running on the PC.

The software development cycle is similar to that of the EPROM cycle,
in that the code is assembled, linked and converted to EPROM format, but
then the file is modified ready for down loading.

4.2.1 Down Loader Protocol

The protocol used for sending the program to the DSP board was the same
as that used by Geoff Liersch for his TMS320C50 board, and was used here
for consistency amongst the University’s DSP systems.

An EPROM-ready file consisting of 16 bit words is modified by adding the
destination address of the program, and the program length to the beginning
of the file.

The first 16 bit word received by the DSP board indicates the destination
address in program RAM, high byte followed by low byte. The next 16 bit
word specifies the length of code to be loaded.

This length N is defined as, N = S

2
− 1. Where S is the number of bytes

to be sent. Note that N should not include the first four bytes specifying the
destination address or length of code to be transferred.

At the completion of the serial transfer, the TMS320C25 branches to the
destination address and begins executing the program.

The loader program running in the EPROM, initialises the USART, then
waits for a byte to be received. It takes the first two bytes and creates the
destination address, and uses the following two bytes to determine the length
of code. It then reads the code from the USART, and stores it at the specified
address in program RAM, incrementing the address after each 16 bit word.

4.2.2 Echo Testing

The loader program also incorporates a form of error-detection, by echoing
every received byte back to the PC. The down loader program on the PC
then compares the transmitted byte with that received, and if they are the

CHAPTER 4. SOFTWARE DEVELOPMENT 28

same, it sends the next byte. Otherwise it terminates, informing the user
that an echo-test error occurred.

4.2.3 PRAM Down Loader Software Development

The development cycle for generating code to be down-loaded direct to the
DSP board is similar to that of the EPROM development cycle.
The steps to be followed are:

C:\> dspa -lc EXAMPLE

This is the same as for an EPROM development cycle.

C:\> dsplnk EXAMPLE.OBJ EXAMPLE.LNK -o EXAMPLE.OUT

-m EXAMPLE.MAP

This varies from an EPROM development cycle, in that the linker command
file now has a different memory map. For an EPROM program, the ROM
lies in the lower half of the memory map, whereas for a RAM program, the
upper half of the memory map is used.

C:\> dsprom -w EXAMPLE.OUT

This command is also different. The -w parameter specifies Intel word format,
since we want to download a single file, rather than create two EPROM files.
This command produces EXAMPLE.HEX

C:\> hexobj02

This is similar to the EPROM cycle, but it reads EXAMPLE.HEX, and produces
EXAMPLE.BIN using Intel format. This .BIN file is the actual program code,
but now it needs the address and length words added to it.

C:\> bin2load

This program reads EXAMPLE.BIN and creates EXAMPLE.LOD which is ready to
download via the serial interface. The address parameter must be the same
as that specified in the linker command file.

C:\> send 2 9600 EXAMPLE.LOD

This sends EXAMPLE.LOD to COM2, using a baud rate of 9600, and assumes
the following communications parameters: Parity = None, Data bits = 8,
Stop bits = 1.

CHAPTER 4. SOFTWARE DEVELOPMENT 29

4.3 Programming the USART

A number of problems were encountered in programming the USART. The
8251A provides two operation modes, asynchronous and synchronous. Asyn-
chronous mode was chosen for this development system, since it allows an
easy interface to an IBM PC. Hence, the initialisation software was written to
place the USART into asynchronous mode immediately after the TMS320C25
was reset. This resulted in intermittent operation, so a closer look at the ini-
tialisation sequence was necessary.

The data sheet on the 8251A states that in order to ensure the USART is
placed in a pre-determined state before attempting to initialise any registers,
the mode must first be setup. This is accomplished by choosing synchronous
mode, and sending two dummy sync characters, before powering down the
USART into idle mode. A software reset can then be issued, followed by the
command to place the USART into asynchronous mode, then programming
the internal registers. This sequence of instructions resulted in a more ro-
bust reset sequence but it was still not completely reliable. It was discovered
that the USART could not recover quickly enough after a write instruction
during the initialisation sequence. The data sheet specified the write re-
covery time for asynchronous mode as being 8tCY . With the USART clock
running at 2.4576MHz, this equates to 3.26µs. In order to ensure a reliable
initialisation, the TMS320C25 must wait for at least 3.26µs after every OUT
instruction. The cycle time for the processor running at 40MHz is 100ns,
hence the program must wait for 33 cycles before issuing the next USART
instruction.

A delay of 33 cycles was accomplished by implementing the following loop :

LALK 07h ; Requires 2 clock cycles

LOOP NOP ; One clock cycle

SUBK 01h ; One clock cycle

BNZ LOOP ; Three clock cycles

Using a loop counter of 06h gives a delay of 31 clock cycles, so in order to
ensure reliability, 07h was chosen, providing a delay of 37 clock cycles. After
both these corrective changes were made, the USART was found to function
reliably, and as expected, with no sign of erroneous operation.

Chapter 5

Testing and Verification

5.1 TMS320C25 and EPROM

In order to verify that the TMS320C25 was operating correctly, a small
program was written and burnt into the EPROMs which simply toggled the
XF pin. This pin was then monitored using an oscilloscope, and it was
observed that the output was indeed switching state. This therefore verified
that the processor was working, the EPROMs had been wired correctly, and
that the one-wait state generator was correct.

5.2 IO Ports

Four LEDs were assigned as output ports to be used as test indicators for
software development. Another program was written and programmed into
the EPROMs to verify that these LEDs were functioning correctly. This
program repeatedly flashed the LEDs in a cyclic sequence, thus verifying the
PAL used for this task was correct. Since the LEDs were to operate with
zero wait states, this test was also used to verify that the wait state circuitry
could generate both zero and one wait states.

5.3 USART Clock

The USART clock was a simple crystal oscillator using a counter to divide
the main crystal frequency to the required baud rate frequency. This was
verified to function correctly, although the piano style DIP switch caused a
few intermittent contact problems. Changing it to a more conventional slider
DIP switch fixed this problem.

30

CHAPTER 5. TESTING AND VERIFICATION 31

5.4 USART

Testing of the USART was accomplished using two separate programs. Ini-
tially, a simple program to repeatedly send AAh followed by 55h was written,
and burnt into the EPROMs. A second program, written in Turbo C was
developed to run on the PC in order to receive the characters sent by the
DSP system. A number of difficulties were encountered here, all of which
have been documented previously. When these problems had been ironed
out, the PC was able to reliably receive the correct characters. This proved
that the USART could transmit satisfactorily.

In order to verify the receive capabilities of the USART, another program
was written and burnt into the EPROMs which simply read a character from
the keyboard, added one to it, and echoed it back to the screen. This was
done to show that the character was actually being processed, and not sim-
ply being turned around somewhere. Since the program was now expecting
to read a character, the Turbo C program was modified to act as a gen-
eral purpose terminal program which could both send data entered from the
keyboard and display data received from the serial port.

Having shown that the USART was functioning correctly, the PRAM
down loader was then developed which allowed programs to be sent from the
PC instead of going through the repetitive EPROM program/erase cycle for
developing new software.

5.5 DTMF Encoder Testing

The encoding software was tested using a number of steps. Initially, only a
single frequency sine wave was generated, and verified to be of the correct
frequency. This was accomplished by measuring the output with an oscillo-
scope to verify that the shape of the wave was clean, and without distortion.
The frequency of oscillation was measured using a digital frequency counter,
and quite surprisingly, the generated wave was exactly the correct frequency.
This procedure was repeated for all eight frequencies of the DTMF keypad,
and all eight were proved to be correct, accurate to within 0.5Hz, or approx-
imately 0.05% depending on frequency.

The next test added two sine waves together to produce a DTMF signal.
This signal was examined on an oscilloscope, and the characteristic modula-
tion effects obtained by mixing two signals together was observed. In order
to verify that the signals were in fact standard DTMF tones, the signal was
applied to a small speaker. This speaker was then coupled to the mouthpiece
of an electronic telephone, and by pressing digits on the PC keyboard, it was

CHAPTER 5. TESTING AND VERIFICATION 32

possible to dial remote telephone numbers, and receive a ringing tone back
from the exchange. This test proved that the DTMF encoder was functioning
correctly.

5.6 DTMF Decoder Testing

In order to test the operation of the DTMF decoder, it was essential that the
DTMF encoder functioned properly. Without a calibrated source of DTMF
tones, the development of the decoder would have been very difficult.

In order to verify the operation of the decoder, the encoder was used
to generate a series of DTMF tones which were recorded using a standard
magnetic cassette recorder. These tones could then be played back and
coupled into the AIC interface on the DSP board. The AIC digitised these
analog signals, and the decoder was able to correctly determine which tone
had been recorded. The decoded tone was then sent to the PC, and displayed
on a monitor.

A number of different DTMF recordings were made. These varied in
tone length, amplitude, playback level and transmission speed. It was found
that the decoder required a minimum tone length of approximately 50ms,
as specified in [1], but the maximum length was not important. Likewise, a
minimum amplitude was required in order to raise the received signal above
the ambient noise level. This was determined experimentally to be approx-
imately 1Vpp at the input to the AIC. This same situation also applied to
the playback level. The transmission speed did not affect the rate at which
the tones were generated, since the keyboard strokes were buffered by the
Turbo C interface program.

Simply transmitting, recording, playing back, and decoding a signal was
not sufficient to prove that the system was actually generating correct DTMF
tones though. All this proved was that the decoder could decipher the tone
generated by the local encoder. In order to fully verify the decoding software,
a commercial DTMF generator was used for testing. This type of device
is commonly used for remote-control applications over a telephone system.
Using this commercial encoder, the decoder was able to correctly decipher
all possible tones, thereby proving its operation.

Chapter 6

Conclusion and Future

Development

A general purpose digital signal processing system has been presented here.
The basic hardware consisting of a TMS320C25 processor, external ROM,
RAM and PC interface will allow this system to be adapted to a large variety
of applications.

A typical signal processing application involving the implementation of
the Goertzel algorithm for DTMF detection has been included. This, along
with a selection of test programs showed that the hardware did function as
expected, and gave an indication of the suitability of this system for DSP
applications.

A DTMF encoder was implemented, and tested by interfacing to the
public telephone network. The encoder was successfully able to dial any
given number, including long distance codes.

The DTMF decoder was verified to function correctly by reading an ana-
log data signal from a magnetic tape, processing the data, and displaying the
decoded tone on a PC monitor. An independent, hand-held DTMF generator
was also used to verify the correct operation of the decoder.

As it stands at the moment, the DSP system could be used for a large
variety of applications with virtually no modifications. The analog interface
may need altering under certain circumstances, since this section was cus-
tomised for DTMF encoding and detection. The digital hardware should not
require any modifications.

Typical applications for this development system could include real-time
spectral analysis, speech recognition, image processing, function generation
and so on. The possibilities are virtually endless.

33

Bibliography

[1] Mock, P. Add DTMF generation and decoding to DSP-uP designs, Digi-
tal Signal Processing Applications with the TMS320 Family, Theory, Al-
gorithms and Implementations, Vol. 1, 1989, Reprinted from Electronic
Design News, October 1985.

[2] General-Purpose Tone Decoding and DTMF Detection, Digital Signal
Processing Applications with the TMS320 Family, Theory, Algorithms
and Implementations, Vol. 2, 1990, Texas Instruments

[3] Precision Digital Sine-Wave Generation with the TMS32010, Digital
Signal Processing Application Report, 1984, Texas Instruments

[4] Dual-Tone Multi-Frequency Coding, ADSP-2100 Family Applications
Handbook, Vol. 2, 1988, Analog Devices.

[5] Second Generation TMS320 User’s Guide, 1987, Texas Instruments.

[6] TMS320 Fixed-Point DSP Assembly Language Tools User’s Guide, 1991,
Texas Instruments.

[7] TMS320C2x C Source Debugger User’s Guide, 1991, Texas Instruments.

[8] TMS320 Family Simulator User’s Guide, 1987, Texas Instruments.

[9] TMS320C2x/C5x Optimizing C Compiler User’s Guide, 1991, Texas
Instruments.

[10] TLC32040 Interface to the TMS32020, Digital Signal Processing Ap-
plications with the TMS320 Family, Theory, Algorithms and Implemen-
tations, Vol. 2, 1990, Texas Instruments

34

Appendix A

AIC Transmit Interrupt

Service Routine

BEGIN

IS

FLAG

SET ?

WRITE

PRIMARY

DATA

TEST

FLAG

WRITE 03h
WRITE

SECONDARY

DATA

INCREMENT

FLAG CLEAR

FLAG

STOP

=1 =2

YN

35

Appendix B

Linker command files

B.1 EPROM development

/*

FileName = EPROM.LNK

Interrupt vector table exists from 0 -> 001Fh

ROM exists from 0020h -> 7FFFh

DRAM exists from 0200h -> 3FFFh ie Data Pages 4 -> 128

IO ports exists from 0 -> 6

*/

MEMORY

{

PAGE 0 : INTVEC : origin = 0x0000,length = 0x0020

EXE : origin = 0x0020,length = 0x6FDF

PAGE 1 : DRAM : origin = 0x0200,length = 0x3DFF

PAGE 2 : IO : origin = 0x0000,length = 0x0006

}

SECTIONS

{

TRAP : {} > INTVEC

.text : {} > EXE

.data : {} > EXE

.bss : {} > DRAM

}

36

APPENDIX B. LINKER COMMAND FILES 37

B.2 PRAM down loader development

/*

FileName = DOWN.LNK

Duplicate vector table exists from 8000h -> 801Fh

PRAM exists from 8020h -> BFFFh

DRAM exists from 0200h -> 3FFFh ie Data Pages 4 -> 128

IO ports exists from 0 -> 6

*/

MEMORY

{

PAGE 0: VECT : origin = 0x8000,length = 0x0020

EXE : origin = 0x8020,length = 0x3FDF

PAGE 1: DRAM : origin = 0x0200,length = 0x3DFF

PAGE 2: IO : origin = 0x0000,length = 0x0006

}

SECTIONS

{

VECTORS : {} > VECT

.text : {} > EXE

.data : {} > EXE

.bss : {} > DRAM

}

Appendix C

Simulator command file

; FileName = SIMINIT.CMD

; This file defines the system memory map as used by the

; simulator.

ma 0,0,0x7000,ram ; bottom section of program ram

ma 0x7000,0,0x3000,ram ; remaining section of pram

ma 0,1,6,ram ; dram reserved registers

ma 0x60,1,0x20,ram ; dram on chip block B0

ma 0x0200,1,0x7000,ram ; dram - on chip and external

ma 0,2,1,oport ; LED0

mc 0,2,LED0,write

ma 1,2,1,oport ; LED1

mc 1,2,LED1,write

ma 2,2,1,oport ; LED2

mc 2,2,LED2,write

ma 3,2,1,oport ; LED3

mc 3,2,LED3,write

ma 4,2,1,ioport ; Uart data register

mc 4,2,u_datar,read

mc 4,2,u_dataw,write

ma 5,2,1,ioport ; Uart control/status register

mc 5,2,u_ctrlr,read

mc 5,2,u_ctrlw,write

ma 6,2,1,iport ; DTMF input to be decoded

38

APPENDIX C. SIMULATOR COMMAND FILE 39

mc 6,2,decin.dat,read

ma 7,2,1,oport ; Decoded DTMF output

mc 7,2,decout.dat,write

Appendix D

PAL Equations

D.1 Wait State Generation

;PALASM Design Description

;------------------------ Declaration Segment ------------

TITLE Memory decoding and wait state generator

PATTERN

REVISION 12

AUTHOR Steven J. Merrifield VK3ESM

COMPANY La Trobe University

DATE 05 Aug 94

CHIP _DECODE PAL22V10

;------------------------ PIN Declarations ---------------

PIN 1 CLK ; INPUT

PIN 2 /PS ; INPUT

PIN 3 /DS ; INPUT

PIN 4 /IS ; INPUT

PIN 5 RW ; INPUT

PIN 6 /STRB ; INPUT

PIN 7 A2 ; INPUT

PIN 8 A15 ; INPUT

PIN 9 /MSC ; INPUT

PIN 14 /ONEWT ; OUTPUT

PIN 15 /UART ; OUTPUT

PIN 16 Q3 REGISTERED ; OUTPUT

40

APPENDIX D. PAL EQUATIONS 41

PIN 17 Q2 REGISTERED ; OUTPUT

PIN 18 Q1 REGISTERED ; OUTPUT

PIN 19 /ROMREAD ; OUTPUT

PIN 20 /DRAMCS ; OUTPUT

PIN 21 /PRAMCS ; OUTPUT

PIN 22 /ROMCS ; OUTPUT

PIN 23 READY ; OUTPUT

;------------------------- Boolean Equation Segment ------

EQUATIONS

ROMCS = PS * STRB * /A15

PRAMCS = PS * STRB * A15

DRAMCS = DS * STRB * /A15

ROMREAD = RW * PS * STRB * /A15

ONEWT = PS * MSC * /A15

UART = IS * A2 * STRB

Q1 = UART * /Q2

Q2 = Q1

Q3 = Q2

READY = (ROMCS * /ONEWT) ; EPROM (1 ws)

+ (PS * A15) ; PRAM (0 ws)

+ (DS * /A15) ; DRAM (0 ws)

+ (IS * /A2) ; LEDS (0 ws)

+ ((Q3 * UART) + (Q2 * /CLK)) ; UART (3 ws)

D.2 IO Decoding

;PALASM Design Description

;------------------------ Declaration Segment ------------

TITLE IO map decoding

PATTERN

REVISION 1.0

AUTHOR Steven J. Merrifield VK3ESM

COMPANY La Trobe University

DATE 07 JUN 94

APPENDIX D. PAL EQUATIONS 42

CHIP _IOMAP PAL22V10

;------------------------ PIN Declarations ---------------

PIN 1 CLK ; INPUT

PIN 2 /STRB ; INPUT

PIN 3 /IS ; INPUT

PIN 4 RW ; INPUT

PIN 5 D0 ; INPUT

PIN 6 A0 ; INPUT

PIN 7 A1 ; INPUT

PIN 8 A2 ; INPUT

PIN 1 /UARTCS ; OUTPUT

PIN 1 /UARTR ; OUTPUT

PIN 18 /IOPORT3 REGISTERED ; OUTPUT

PIN 19 /IOPORT2 REGISTERED ; OUTPUT

PIN 20 /IOPORT1 REGISTERED ; OUTPUT

PIN 21 /IOPORT0 REGISTERED ; OUTPUT

PIN 22 /UARTW ; OUTPUT

PIN 23 /LE ; OUTPUT

;------------------------- Boolean Equation Segment ------

EQUATIONS

UARTCS = A2 * STRB * IS

UARTR = A2 * STRB * IS * RW

UARTW = A2 * STRB * IS * /RW

LE = /UARTW

IOPORT0 = ((/A2 * /A1 * /A0 * STRB * IS * /RW) * D0) +

(/(/A2 * /A1 * /A0 * STRB * IS * /RW) * IOPORT0)

IOPORT1 = ((/A2 * /A1 * A0 * STRB * IS * /RW) * D0) +

(/(/A2 * /A1 * A0 * STRB * IS * /RW) * IOPORT1)

IOPORT2 = ((/A2 * A1 * /A0 * STRB * IS * /RW) * D0) +

(/(/A2 * A1 * /A0 * STRB * IS * /RW) * IOPORT2)

IOPORT3 = (/A2 * A1 * A0 * STRB * IS * /RW * D0) +

(/(/A2 * A1 * A0 * STRB * IS * /RW) * IOPORT3)

Appendix E

Source Code

This appendix contains both the TMS320C25 assembly language source code,
and the Turbo C code necessary for interfacing to an IBM PC serial port.

43

Appendix F

Schematic Diagrams

65

Wed Jun 25 10:18:43 1995 Page 1toggle.asm
; ***
; This program toggles the XF (external flag) pin high and low, and
; was the first ever written for the TMS320C25 DSP system. It verified
; that the processor, EPROM and wait state generator were working
; correctly. Note that it was assembled and linked using an old version
; of the tools, hence the different assembler directives.
; ***

TITL ’TOGGLE TEST’

AORG >0000
RESET B INIT

AORG >0020
INIT ldpk 0 ; set DP reg. to point to data page 0
LOOP sxf ; set external flag pin high

rxf ; reset external flag pin low
b LOOP

END

Wed Jun 25 10:18:43 1995 Page 1leds.asm
; ***
; LED chaser program.
; Display pattern is as follows : (0 1 2 3 2 1) 0 1 2 3 2 1 0 1 2 ...
; We need to repeat the marked sequence with a delay after each flash
; so we can see the LED changing state. This program was initially
; burnt into ROM to verify the IO port addressing PAL.
; ***

.text

LED0 .set 0 ; address of LED 0
LED1 .set 1 ; address of LED 1
LED2 .set 2 ; address of LED 2
LED3 .set 3 ; address of LED 3
LP_DEL .set 0FFh ; loop delay
ON .set 1 ; offset from page pointer
OFF .set 0 ; offset from page pointer

ldpk 4 ; store data on page 4 (0200h)
lalk 1 ; data to turn LED on
sacl ON ; store at 0201h - offset 1
zac ; data to turn LED off (ACC <- 0)
sacl OFF ; store at 0200h - offset 0

TOP out OFF,LED0
call DELAY
out ON,LED0
call DELAY

out OFF,LED1
call DELAY
out ON,LED1
call DELAY

out OFF,LED2
call DELAY
out ON,LED2
call DELAY

out OFF,LED3
call DELAY
out ON,LED3
call DELAY

out OFF,LED2
call DELAY
out ON,LED2
call DELAY

out OFF,LED1
call DELAY
out ON,LED1
call DELAY

b TOP ; repeat the entire sequence again

DELAY lalk LP_DEL,8 ; left shift to make delay longer
LOOP subk 1 ; decrement counter

bnz LOOP ; until counter is zero
ret ; then return to caller

.end

Wed Jun 25 10:18:43 1995 Page 1loader.asm
; ***
; Basic loader program - Reads .LOD files from the serial port into
; data ram then copies from data ram into program ram. When the whole
; file has been copied into program ram, it branches to the start address
; and starts running the downloaded program. It also echos any received
; data back to the PC for error checking.

; 08 Aug 94 - Initial release
; 23 Aug 94 - Removed delays after every uart instruction that was not
; part of the init. sequence (now loads more quickly)
; 02 Sep 94 - Added interrupt vector table

; LED 0 turns on after initialising the UART.
; LED 1 turns on after reading the start address.
; LED 2 turns on after reading the length of code to be sent.
; LED 3 turns on after loading the program.
; ***

vect .set 8000h ; start of interrupt vector table in DRAM

.sect "VECTORS"
b INIT ; external reset
b vect+2 ; int 0
b vect+4 ; int 1
b vect+6 ; int 2
b vect+8 ; reserved
b vect+10 ; reserved
b vect+12 ; reserved
b vect+14 ; reserved
b vect+16 ; reserved
b vect+18 ; reserved
b vect+20 ; reserved
b vect+22 ; reserved
b vect+24 ; internal timer
b vect+26 ; serial port rx
b vect+28 ; serial port tx
b vect+30 ; trap instruction address

.text

temp0 .set 0
temp1 .set 1
temp2 .set 2
boot_addr .set 3 ; destination addr. of boot code
byte_cnt .set 4 ; length of code to be sent
save_acc .set 5 ; temp for intermediate acc. access
ON .set 6 ; data to turn LED on
OFF .set 7 ; data to turn LED off

; IO ports
LED0 .set 0
LED1 .set 1
LED2 .set 2
LED3 .set 3
u_data .set 4 ; UART data register
u_ctrl .set 5 ; UART control/status register

; ***
; Execution starts here
; ***
INIT dint ; disable interrupts

rovm ; disable overflow
ssxm ; allow extended signed no’s.
cnfd ; configure block B0 as data memory
ldpk 4 ; start data memory at 0200h

Wed Jun 25 10:18:43 1995 Page 2loader.asm
; Setup LED data

zac
sacl OFF
lalk 01
sacl ON

; Reset all LEDs
out OFF,LED0
out OFF,LED1
out OFF,LED2
out OFF,LED3

; ***
; Assume worst-case UART initialisation
; ***

zac
sacl temp0
out temp0,5 ; set sync mode operation
call U_DELAY

out temp0,5 ; load 1st dummy sync char
call U_DELAY

out temp0,5 ; load 2nd dummy sync char
call U_DELAY

lack 40h ; internal reset
sacl temp0
out temp0,5
call U_DELAY

; UART is now idling and waiting for configuration data

lack 04Eh ; N,8,1 x16
sacl temp0
out temp0,5
call U_DELAY

lack 05 ; enable Tx & Rx
sacl temp0
out temp0,5
call U_DELAY

; Light LED0 after UART initialisation
out ON,LED0

; ***
; Get destination addr. of boot code & store it in dma(boot_addr)
; ***
label1 in temp0,u_ctrl ;

bit temp0,14 ; wait until we rx a char
bbz label1 ;

in temp0,u_data ; read high byte of dest. addr.
call SENDBACK
lac temp0,8 ; shl 8
sacl save_acc

label2 in temp0,u_ctrl ;
bit temp0,14 ; wait for a char
bbz label2 ;

in temp0,u_data ; read low byte of dest. addr.
call SENDBACK
lac temp0
andk 0FFh ; mask out top 8 bits

Wed Jun 25 10:18:43 1995 Page 3loader.asm
sacl temp0
lac save_acc
or temp0
sacl boot_addr

; Light LED1 after setting up boot adddress
out ON,LED1

; ***
; Get length of code & store it in dma(byte_cnt)
; ***
label3 in temp0,u_ctrl ;

bit temp0,14 ; wait for a char
bbz label3 ;

in temp0,u_data ; high byte of count
call SENDBACK
lac temp0,8
sacl save_acc

label4 in temp0,u_ctrl
bit temp0,14 ; wait for a char
bbz label4

in temp0,u_data ; low byte of count
call SENDBACK
lac temp0
andk 0FFh ; mask out top 8 bits
sacl temp0
lac save_acc
or temp0
addk 01h ; add 1 so byte_cnt agrees with Lurch’s protocol
sacl byte_cnt

; Light LED2 after setting up byte count
out ON,LED2

; ***
; Get code and store it in a temp memory location in data ram then transfer
; from that temp location to program ram and decrement byte_cnt. Check if
; byte_cnt = 0, if not then get next piece of code.
; ***

lac boot_addr ; store boot_addr in temp mem loc so it can
sacl temp1 ; be incremented for tblw

loop1 in temp0,u_ctrl
bit temp0,14 ; wait for a char
bbz loop1

in temp0,u_data ; high byte of data
call SENDBACK
lac temp0,8
sacl save_acc

label5 in temp0,u_ctrl
bit temp0,14 ; wait for a char
bbz label5

in temp0,u_data ; low byte of data
call SENDBACK
lac temp0
andk 0FFh ; mask out top 8 bits
sacl temp0
lac save_acc
or temp0
sacl temp0 ; write data to temp mem. addr. for tlbw

Wed Jun 25 10:18:43 1995 Page 4loader.asm

lac temp1 ; temp1 contains addr to write to in pm
tblw temp0 ; transfer from dma(temp0) to pma(ACC)
addk 1 ; increment ACC for next access by tblw
sacl temp1 ; save new index for pma
lac byte_cnt
subk 1
sacl byte_cnt
bnz loop1

; Light LED3 after loading code into pm
out ON,LED3

; jump to dest. addr and start running program
lac boot_addr
bacc

; ***
; Echo the received byte back to the PC for error checking. The PC end
; compares the sent byte with the echoed byte, and if they are not the
; same it terminates with an "echo test error".
; ***
SENDBACK sacl save_acc
CHECK in temp2,u_ctrl ; wait until TxRDY

bit temp2,15
bbz CHECK

out temp0,u_data ; echo data back to PC
lac save_acc
ret

; ***
; We need a delay of at least 33 CPU clock cycles (at 40MHz) after each
; UART access during initialisation to allow for the recovery time.
; ***
U_DELAY sacl save_acc ; PUSH accumulator

lalk 7
wait nop ; 1 clock cycle

subk 1 ; 1 clock cycle
bnz wait ; 3 clock cycles
lac save_acc ; POP accumulator
ret

.end

Wed Jun 25 10:18:43 1995 Page 1tx-dtmf.asm
; ***
; This program reads a character from the PC serial interface, and
; uses a lookup table to decide which tone to generate. It then
; synthesises a DTMF tone for a fixed period of time, then zeros the
; ouput of the DAC.

; Note that with a 40MHz CPU clock, the actual sampling frequency could
; not be set to exactly 8kHz. It was defined to be 7936.5Hz, and the
; values in the key_table reflect this alteration.

; Note that flags are used to determine when to process new data.
; If the flag is set to 00FFh then an interrupt has occured, and the
; program branches to the relevant service routine.

; When a transmit interrupt occurs the program branches to the transmit
; interrupt service routine and sets the tx_flag. It then gets data
; from data ram and writes it to the tx serial port register.
; ***

.sect "VECTORS"
b start ; 0 - External reset
b INT0 ; 2 - User int 0
b INT1 ; 4 - User int 1
b INT2 ; 6 - User int 2
b d_int ; 8 - Reserved
b d_int ; 10 - Reserved
b d_int ; 12 - Reserved
b d_int ; 14 - Reserved
b d_int ; 16 - Reserved
b d_int ; 18 - Reserved
b d_int ; 20 - Reserved
b d_int ; 22 - Reserved
b tim_int ; 24 - Internal timer
b rx_int ; 26 - Serial port rx
b tx_int ; 28 - Serial port tx
b d_int ; 30 - Trap instruction addr.

.text

sine .word 0000h, 0324h, 0646h, 0964h, 0c7ch, 0f8dh, 1294h
.word 1590h, 187eh, 1b5dh, 1e2bh, 20e7h, 238eh, 2620h
.word 289ah, 2afbh, 2d41h, 2f6ch, 3179h, 3368h, 3537h
.word 36e5h, 3871h, 39dbh, 3b21h, 3c42h, 3d3fh, 3e15h
.word 3ec5h, 3f4fh, 3fb1h, 3fech, 4000h, 3fech, 3fb1h
.word 3f4fh, 3ec5h, 3e15h, 3d3fh, 3c42h, 3b21h, 39dbh
.word 3871h, 36e5h, 3537h, 3368h, 3179h, 2f6ch, 2d41h
.word 2afbh, 289ah, 2620h, 238eh, 20e7h, 1e2bh, 1b5dh
.word 187eh, 1590h, 1294h, 0f8dh, 0c7ch, 0964h, 0646h
.word 0324h, 0000h
.word 0fcdch, 0f9bah, 0f9bah, 0f69ch, 0f384h, 0f073h
.word 0ed6ch, 0ea70h, 0e782h, 0e4a3h, 0e1d5h, 0df19h
.word 0dc72h, 0d9e0h, 0d766h, 0d505h, 0d2bfh, 0d094h
.word 0ce87h, 0cc98h, 0cac9h, 0c91bh, 0c78fh, 0c625h
.word 0c4dfh, 0c3beh, 0c2c1h, 0c1ebh, 0c13bh, 0c0b1h
.word 0c04fh, 0c014h, 0c000h, 0c014h, 0c04fh, 0c0b1h
.word 0c13bh, 0c1ebh, 0c2c1h, 0c3beh, 0c4dfh, 0c625h
.word 0c78fh, 0c91bh, 0cac9h, 0cc98h, 0ce87h, 0d094h
.word 0d2bfh, 0d505h, 0d766h, 0d9e0h, 0dc72h, 0df19h
.word 0e1d5h, 0e4a3h, 0e782h, 0ea70h, 0ed6ch, 0f073h
.word 0f384h, 0f69ch, 0f9bah, 0fcdch

m1 .word 07fffh

key_table .word 0f2dh, 158ch ; 0
.word 0b3dh, 137fh ; 1
.word 0b3dh, 158ch ; 2

Wed Jun 25 10:18:43 1995 Page 2tx-dtmf.asm
.word 0b3dh, 17d2h ; 3
.word 0c6bh, 137fh ; 4
.word 0c6bh, 158ch ; 5
.word 0c6bh, 17d2h ; 6
.word 0dbdh, 137fh ; 7
.word 0dbdh, 158ch ; 8
.word 0dbdh, 17d2h ; 9
.word 0b3dh, 1a56h ; A
.word 0c6bh, 1a56h ; B
.word 0dbdh, 1a56h ; C
.word 0f2dh, 1a56h ; D
.word 0f2dh, 137fh ; *
.word 0f2dh, 17d2h ; #

; IO ports
u_data .set 4
u_ctrl .set 5

; Page 0 variables (0000h)
dxr .set 1 ; data tx reg. address
imr .set 4 ; interrupt mask reg.
tx_flag .set 96 ; data has been sent flag
stat_st .set 97 ; temp for saving status reg
accl_st .set 98 ; temp for low half of accumulator
acch_st .set 99 ; temp for high half of accumulator
tx_data .set 100 ; data to be tx’ed must be stored here
init_data .set 101 ; data for init. must be stored here
init_flag .set 102 ; flag for secondary communications

delta1 .set 107 ; increment for first sine wave
alpha1 .set 108
sin1 .set 109 ; actual sine wave value
temp .set 110
mask .set 111
sin_offset .set 112 ; pointer into sine lookup table
key_offset .set 113 ; pointer into keypad lookup table
temp2 .set 114
temp3 .set 115
tone_len .set 116 ; address for time one tone is sent
delta2 .set 117 ; increment for second sine wave
alpha2 .set 118
sin2 .set 119 ; actual sine wave value
last .set 120
sec_last .set 121

; ***
; Initialization
; ***
start ldpk 0 ; point to data page zero

fort 0 ; set serial port to be 16 bits wide
rtxm ; external sync
sfsm ; sync required for each transfer
cnfd ; configure block B0 as data

zac ; reset tx and init flags
sacl tx_flag
sacl init_flag

larp ar1 ; counter for time one tone is sent

eint
lalk 020h ; enable only tx interrupt
sacl imr

; ***

Wed Jun 25 10:18:43 1995 Page 3tx-dtmf.asm
; Main program
; ***

lalk 1223h ; setup TA and RA (divide by 9)
sacl init_data
call tx_ready
lalk 1
sacl init_flag

wait_2nd_a lac init_flag ; wait until secondary comms is finished
bnz wait_2nd_a

lalk 468eh ; setup TB and RB (divide by 35)
sacl init_data
call tx_ready
lalk 1
sacl init_flag

wait_2nd_b lac init_flag ; wait until secondary comms is finished
bnz wait_2nd_b

lalk 1000 ; time one time is transmitted (50ms)
sacl tone_len

lalk m1
tblr mask
lalk sine ; save start addr. of sinewave lookup table
sacl sin_offset

zac
sacl alpha1 ; start at zero in sine LUT
sacl alpha2
sacl delta1
sacl delta2

lalk key_table ; prepare keypad lookup table
sacl key_offset

loop call check_key ; see if a key has been pressed
lac alpha1,8
sach temp
lac temp
add sin_offset
tblr sin1 ; calculate first sine wave sample
lac alpha1
add delta1
and mask
sacl alpha1

; 2nd sine wave
lac alpha2,8
sach temp
lac temp
add sin_offset
tblr sin2 ; calculate second sine wave sample
lac alpha2
add delta2
and mask
sacl alpha2

lac sin1 ; add the first and second together
add sin2

sacl tx_data ; write the combined sum to DAC
call tx_ready

banz loop ; banz has got a built in decrement
zac ; when loop has run down, zero DAC output

Wed Jun 25 10:18:43 1995 Page 4tx-dtmf.asm
sacl alpha1
sacl alpha2
sacl delta1
sacl delta2
b loop

; ***
; Check if a key was pressed
; ***
check_key in temp2,u_ctrl ; test if key pressed

bit temp2,14
bbz end_check

in temp2,u_data ; read data from uart into temp addr.
lac temp2 ; remove top half since IN only reads
andk 00FFh ; an 8 bit number, so the top 8 bits
sacl temp2 ; will be garbage!

lac temp2,1 ; mult kbhit by 2 since LUT uses row-col
add key_offset ; move to correct position in LUT
tblr delta1 ; read row value from LUT
addk 1
tblr delta2 ; read column value from LUT
lar ar1, tone_len ; reset tone length after every keypress

end_check ret

; ***
; Test if transmit flag is set
; ***
tx_ready lac tx_flag ; when flag is set, tx_flag = 0ffh

andk 00ffh
subk 0ffh
bnz tx_ready ; wait until flag is set
sacl tx_flag ; if flag is set, then reset it
ret

; ***
; Transmit interrupt service routine
; ***
tx_int sst stat_st ; push status reg

sacl accl_st ; push accumulator
sach acch_st

bit init_flag,14 ; are we sending init. data?
bbz test_2nd

send_2nd lac init_data ; send actual init. data (ie divide no’s)
sacl dxr
zac
sacl init_flag ; reset init flag
b exit_tx_int

test_2nd bit init_flag,15
bbnz send_1st

primary lalk 0ffh ; set transmit data flag
sacl tx_flag
lac tx_data ; get data from memory
andk 0fffch ; mask out bottom 2 bits
sacl dxr ; write data to AIC
b exit_tx_int

send_1st lac init_flag ; increment init_flag
addk 1
sacl init_flag
lalk 03 ; start secondary communications

Wed Jun 25 10:18:43 1995 Page 5tx-dtmf.asm
sacl dxr

exit_tx_int zals accl_st ; pop accumulator
addh acch_st
lst stat_st ; pop status reg

eint
ret

; ***
; Interrupts we’re not interested in
; ***
d_int ret
rx_int ret
tim_int ret
INT0 ret
INT1 ret
INT2 ret

.end

Wed Jun 25 10:18:43 1995 Page 1decode.asm
; ***
; DTMF decoder implemented using the Goertzel algorithm.
; Electronics IV (Honours) Project 1994
; by Steven J. Merrifield
;
; This program incorporates changes made after the original thesis
; was submitted. Where there are discrepancies between this, and the
; original code, the code presented here should take precedence.
; ***

.sect "VECTORS"
b start ; 0 - External reset
b INT0 ; 2 - User int 0
b INT1 ; 4 - User int 1
b INT2 ; 6 - User int 2
b d_int ; 8 - Reserved
b d_int ; 10 - Reserved
b d_int ; 12 - Reserved
b d_int ; 14 - Reserved
b d_int ; 16 - Reserved
b d_int ; 18 - Reserved
b d_int ; 20 - Reserved
b d_int ; 22 - Reserved
b tim_int ; 24 - Internal timer
b rx_int ; 26 - Serial port rx
b tx_int ; 28 - Serial port tx
b d_int ; 30 - Trap instruction addr.

.text

; IO ports
LED0 .set 0
LED1 .set 1
LED2 .set 2
LED3 .set 3
u_data .set 4
u_ctrl .set 5

; Page 0 variables (0000h)
drr .set 0 ; data rx reg. address
dxr .set 1 ; data tx reg. address
imr .set 4 ; interrupt mask reg.
tx_flag .set 96 ; data has been sent flag
rx_flag .set 97 ; data has been received flag
stat_st .set 98 ; temp for saving status reg. during subroutine calls
accl_st .set 99 ; temp for low half of accumulator
acch_st .set 100 ; temp for high half of accumulator
rx_data .set 101 ; received data is stored here
tx_data .set 102 ; data to be transmitted must be stored here
init_data .set 105 ; data for initialisation muse be stored here
init_flag .set 106 ; flag for secondary communications (initialisation)
OFF .set 107 ; data to turn LED off
ON .set 108 ; data to turn LED on
stat_1 .set 109 ; save status register 1

nfilt .set 8 ; No. of filters (one for each row/col freq)
u_data .set 4
u_ctrl .set 5

dram .set 0200h ; DRAM starts at addr. 0200h (ie DP = 4)
cs1 .set dram+00
cs2 .set dram+01
cs3 .set dram+02
cs4 .set dram+03
cs5 .set dram+04
cs6 .set dram+05

Wed Jun 25 10:18:43 1995 Page 2decode.asm
cs7 .set dram+06
cs8 .set dram+07

negmax .set dram+08

rowmx .set dram+11
colmx .set dram+12
rowmax .set dram+13
colmax .set dram+14
count .set dram+15
rowcol .set dram+16
last .set dram+19
sec_last .set dram+20

dat11 .set dram+28
dat23 .set dram+33
dat14 .set dram+34
dat15 .set dram+36
dat17 .set dram+40
dat27 .set dram+41
dat18 .set dram+42
dat28 .set dram+43
dat29 .set dram+45
dat213 .set dram+53
dat216 .set dram+59
datin .set dram+60
temp .set dram+61
temp2 .set dram+62
temp3 .set dram+63
save_acc .set dram+64
prnt .set dram+65
test .set dram+66

; Filter co-efficients for each row/col. frequency
; Fundamental - Real coeff N=205

tblstrt .word 27906 ; 697 Hz
.word 26802 ; 770 Hz
.word 25597 ; 851 Hz
.word 24295 ; 941 Hz
.word 19057 ; 1209 Hz
.word 15654 ; 1336 Hz
.word 12945 ; 1477 Hz
.word 09166 ; 1633 Hz

tblend .word 08000h ; NegMax - mask for data out

; ***
; Initialization
; ***
start ldpk 0 ; Point to data page zero

fort 0 ; Set serial port to be 16 bits wide
rtxm ; External sync
sfsm ; Sync required for each transfer

cnfd ; Set block B0 to be data memory
sovm ; set overflow mode
ssxm ; set sign extention mode

zac ; Reset tx and rx flags
sacl tx_flag
sacl rx_flag
sacl init_flag
sacl OFF
lalk 1
sacl ON

Wed Jun 25 10:18:43 1995 Page 3decode.asm
eint
lalk 020h ; Enable only tx interrupt to init AIC
sacl imr

lalk 1223h ; setup TA and RA
sacl init_data
call tx_ready
lalk 1
sacl init_flag

wait_2nd_a lac init_flag ; wait until secondary comms is finished
bnz wait_2nd_a

lalk 468eh ; setup TB and RB
sacl init_data
call tx_ready
lalk 1
sacl init_flag

wait_2nd_b lac init_flag ; wait until secondary comms is finished
bnz wait_2nd_b

lalk 010h ; enable only rx int for receiveing data
sacl imr

; ***
; Execution starts here
; ***

ldpk 4 ; Point to data page 4 (0200h)

larp ar0
lrlk ar0,cs1 ; Pointer to the start of ram to be

; initialised.
lalk tblstrt ; Pointer to the start of init table.
lrlk ar1,tblend-tblstrt ; Count of data to be moved.

next tblr *+,ar1
addk 1
banz next,*-,ar0

lalk 0ffh ; set last and second last decoded
sacl last ; digits to be "invalid"
sacl sec_last

again zac ; Zero DFT loop variables
lrlk 0,15
lrlk 1,dat11

zero larp 1
sacl *+,0,0
banz zero

; ***
; Take data and calculate DFT loop
; ***

lalk 205 ; Set DFT loop variable
loop sacl count

lrlk ar0,cs8 ; Set up pointer to co-efficients.
lrlk ar1,dat28 ; Set up pointer to delayed outputs.
lrlk ar2,nfilt-1 ; Number of filters.

; read from AIC under interrupts
ldpk 0
call rx_ready
lac rx_data
ldpk 4

sfr ; Stop accumulator from overflowing by shifting
sfr ; data to the right - this effectively takes the

Wed Jun 25 10:18:43 1995 Page 4decode.asm
; sfr ; 16 bit value read from the serial port and converts
; sfr ; it to a 14 bit value as generated by the AIC.

; My hardware has an amplifier which limits the gain
; of the input, so only two shifts are required. When
; run in the simulator, all four shifts are needed.

sacl datin

; ***
; Begin DFT loops
; ***
frpt larp ar0

lt *,ar1 ; load cos(8*C) ready for multiply
lac datin,12 ; X(n)
subh *- ; X(n) - Y(n-2)
mpy * ; cos(8*C) * Y(n-1)
ltd * ; Y(n-1) -> Y(n-2)
apac
apac
apac ; X(n) + 2cos(8*C) * Y(n-1) - Y(n-2)
sach *-,0,ar0 ; --> Y(n-1)
bv overflow
mar *-,ar2 ; Decrement the co-efficient pointer.
banz frpt,*-,ar0 ; Decrement the filter number.

lac count ; Repeat for length of transform
subk 1
bnz loop
b check

overflow out OFF,LED0 ; Show overflow status on LED0

; ***
; Calculate energy at each frequency
; ***
check lrlk 0,cs8

lrlk 1,dat28
lrlk 2,nfilt-1

maglp call energy
sach *-,1,ar0
mar *-,ar2
banz maglp,*-,ar0

; ***
; Compare energies and determine decode value
; ***

lalk 3
sacl rowmx
sacl colmx

; ***
; Find row peak
; ***
rows lrlk 1,2

lrlk 0,dat23
lac dat14
sacl rowmax

rowl larp 0
mar *-
lac rowmax
sub *
bgez rowbr

sar 1,rowmx
lac *

Wed Jun 25 10:18:43 1995 Page 5decode.asm
sacl rowmax

rowbr mar *-,1
banz rowl

; ***
; Find column peak
; ***
column lrlk 1,2

lrlk 0,dat27
lac dat18
sacl colmax

coll larp 0
mar *-
lac colmax
sub *
bgez colbr

sar 1,colmx
lac *
sacl colmax

colbr mar *-,1
banz coll

; ***
; Merge row / column together
; ***

lac rowmx,4
or colmx
sacl rowcol

; ***
; Check for valid signal strength
; ***
sig_str lac colmax

subk 4
blz invalid_dig

lac rowmax
subk 4
blz invalid_dig
b test_new

invalid_dig lalk 0ffh
sacl rowcol

; ***
; Test if the decoded digit is new
; ***
test_new lac rowcol

sub last
bz samelast

lac last
sacl sec_last
lac rowcol
sacl last
b again

samelast lac rowcol
sub sec_last
bz again

lac last
sacl sec_last
lac rowcol
sacl last

Wed Jun 25 10:18:43 1995 Page 6decode.asm

; check if decoded digit == 0 (my TC prog can’t read an ASCII null)
lac rowcol
subk 0
bnz check_u
addk 55h
sacl rowcol

check_u in temp,u_ctrl ; wait until TxRdy
bit temp,15
bbz check_u
out rowcol,u_data ; send decoded digit to PC

b again ; get next sample

; ***
; Energy calculation subroutine
; ***
energy lac negmax,15 ; NegMax = 8000h

add *,15,1
sach count
lt *- ; -1/2 + CSn/2
mpy count
pac
sach count,1 ; D2(CSn-1)/2
lt *+
mpy count
pac
sach count,1 ; D1 * D2(CSn-1)/2
lac *-,15
sub *,15
abs
sach * ; abs(D2-D1)/2
lt *
mpy *
pac ; ((D2-D1)/2)^2
sub count,15 ; ((D2-D1)^2)/4 - D1*D2(CSn-1)/2
ret

; ***
; Test if receive flag is set
; ***
rx_ready ldpk 0

lac rx_flag
andk 00ffh
subk 0ffh
bnz rx_ready
sacl rx_flag
ret

; ***
; Test if transmit flag is set
; ***
tx_ready ldpk 0

lac tx_flag
andk 00ffh
subk 0ffh
bnz tx_ready
sacl tx_flag
ret

; ***
; Receive interrupt service routine
; ***
rx_int sst stat_st ; Push status register

ldpk 0

Wed Jun 25 10:18:43 1995 Page 7decode.asm
sst1 stat_1
sacl accl_st ; Push accumulator
sach acch_st
lalk 0ffh ; Set received data flag
sacl rx_flag
lac drr ; Get data from AIC
sacl rx_data ; Save it to memory
zals accl_st ; Pop accumulator
addh acch_st
lst1 stat_1
lst stat_st ; Pop status register
eint
ret

; ***
; Transmit interrupt service routine
; ***
tx_int sst stat_st ; Push status reg

ldpk 0
sst1 stat_1
sacl accl_st ; Push accumulator
sach acch_st

bit init_flag,14
bbz test_2nd

send_2nd lac init_data
sacl dxr
zac
sacl init_flag
b exit_tx_int

test_2nd bit init_flag,15
bbnz send_1st

primary lalk 0ffh ; Set transmit data flag
sacl tx_flag
lac tx_data ; Get data from memory
andk 0fffch ; Mask out bottom 2 bits
sacl dxr ; Write data to AIC
b exit_tx_int

send_1st rxf
lac init_flag
addk 1
sacl init_flag
lalk 03
sacl dxr

exit_tx_int zals accl_st ; Pop accumulator
addh acch_st
lst1 stat_1
lst stat_st ; Pop status reg

eint
ret

; ***
; Interrupts we’re not interested in
; ***
d_int ret
tim_int ret
int0 ret
int1 ret
int2 ret

.end

Wed Jun 25 10:18:43 1995 Page 8decode.asm

Wed Jun 25 10:18:44 1995 Page 1bin2load.c
#include <stdio.h>

main()
{
char infile[80];
char outfile[80];
FILE *in;
FILE *out;
unsigned int i;
unsigned char tmp;
unsigned int count=0;
unsigned int bytecnt;
unsigned char data;
unsigned int address;

printf("Welcome to bin2load Version 3.1415\n\n\n");
printf("Enter bin file name:");
scanf("%s",infile);
in = fopen(infile,"rb");
if (!in)
{
printf("Error: cannot find file %s\n",infile);
return(-1);
}
printf("Enter load file name:");
scanf("%s",outfile);
out = fopen(outfile,"wb");
if (!out)
{
printf("Error: cannot open file %s for writing\n",outfile);
return(-1);
}
printf("Enter start address (in hex):");
scanf("%x",&address);
while (!feof(in))
{
fread(&data,1,1,in);
count++;
}
count--; /* Remove one for the EOF character */
bytecnt = count;
count = (count / 2) - 1;
printf("Address = 0x%04x %5u\n",address,address);
printf("Byte Count = 0x%04x %5u\n",bytecnt,bytecnt);
printf("Count = 0x%04x %5u\n",count,count);
fseek(in,0,0);
tmp = (unsigned char)(address >> 8);
fwrite(&tmp,1,1,out);
tmp = (unsigned char)(address & 0xff);
fwrite(&tmp,1,1,out);
tmp = (unsigned char)(count >> 8);
fwrite(&tmp,1,1,out);
tmp = (unsigned char)(count & 0xff);
fwrite(&tmp,1,1,out);
for (i=0;i<bytecnt;i++)
{
fread(&data,1,1,in);
fwrite(&data,1,1,out);
}
fclose(in);
fclose(out);
return(0);
}

Wed Jun 25 10:18:44 1995 Page 1send.c
/***

DSP RAM downloader by Steven J. Merrifield

Based on the serial routines originally written by Peter Ibbotoson
of Borland Intl. c1987 and downloaded as SERIAL.ARJ from

"The Software Parlour BBS +(613) 338 3794."

Revision history :

1.0 940807 - First release.
1.1 940823 - Reduced delay for overrun errors & altered printf

statement to speed up transfer. Changed the way the
header was formatted.

1.2 940903 - Commented out echo testing for Darin’s 6809 board
1.3 940922 - Cleaned up opening screen - added <ESC> to abort

during download

**/

#include <dos.h>
#include <conio.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include "serial.h" /* communication routines */

#define FALSE 0
#define TRUE !FALSE

#define NOERROR 0
#define BUFOVFL 1 /* Buffer overflow error */
#define ECHOTEST 2 /* Echo test error */

#define SBUFSIZ 1024 /* Serial buffer size */

int SError = NOERROR;
int portbase = 0;
void interrupt(*oldvects[2])();

static char ccbuf[SBUFSIZ];
unsigned int startbuf = 0;
unsigned int endbuf = 0;

/**
Handle communications interrupts and put them in ccbuf

**/
void interrupt com_int(void)
{

disable();
if ((inportb(portbase + IIR) & RX_MASK) == RX_ID)
{

if (((endbuf + 1) & SBUFSIZ - 1) == startbuf) SError = BUFOVFL;
ccbuf[endbuf++] = inportb(portbase + RXR);
endbuf &= SBUFSIZ - 1;

}
/* Signal end of hardware interrupt */
outportb(ICR, EOI);
enable();

}

/***
Output a character to the serial port

***/

Wed Jun 25 10:18:44 1995 Page 2send.c
int SerialOut(char x)
{

long int timeout = 0x0000FFFFL;
outportb(portbase + MCR, MC_INT | DTR | RTS);
/* Wait for Clear To Send from modem */
while ((inportb(portbase + MSR) & CTS) == 0)

if (!(--timeout))
return (-1);

timeout = 0x0000FFFFL;
/* Wait for transmitter to clear */
while ((inportb(portbase + LSR) & XMTRDY) == 0)

if (!(--timeout))
return (-1);

disable();
outportb(portbase + TXR, x);
enable();
return (0);

}

/***
This routine returns the current value in the buffer

***/
int getccb(void)
{

int res;
if (endbuf == startbuf)

return (-1);
res = (int) ccbuf[startbuf++];
startbuf %= SBUFSIZ;
return (res);

}

/***
Install our functions to handle communications

***/
void setvects(void)
{

oldvects[0] = getvect(0x0B);
oldvects[1] = getvect(0x0C);
setvect(0x0B, com_int);
setvect(0x0C, com_int);

}

/***
Uninstall our vectors before exiting the program

***/
void resvects(void)
{

setvect(0x0B, oldvects[0]);
setvect(0x0C, oldvects[1]);

}

/***
Turn on communications interrupts

***/
void i_enable(int pnum)
{

int c;
disable();
c = inportb(portbase + MCR) | MC_INT;
outportb(portbase + MCR, c);
outportb(portbase + IER, RX_INT);
c = inportb(IMR) & (pnum == COM1 ? IRQ4 : IRQ3);
outportb(IMR, c);
enable();

Wed Jun 25 10:18:44 1995 Page 3send.c
}

/***
Turn off communications interrupts

***/
void i_disable(void)
{

int c;
disable();
c = inportb(IMR) | ~IRQ3 | ~IRQ4;
outportb(IMR, c);
outportb(portbase + IER, 0);
c = inportb(portbase + MCR) & ~MC_INT;
outportb(portbase + MCR, c);
enable();

}

/***
Tell modem that we’re ready to go

***/
void comm_on(void)
{

int c, pnum;
pnum = (portbase == COM1BASE ? COM1 : COM2);
i_enable(pnum);
c = inportb(portbase + MCR) | DTR | RTS;
outportb(portbase + MCR, c);

}

/***
Misc functions

***/
void comm_off(void)
{

i_disable();
outportb(portbase + MCR, 0);

}

void initserial(void)
{

endbuf = startbuf = 0;
setvects();
comm_on();

}

void closeserial(void)
{

comm_off();
resvects();

}

int c_break(void) /* Ctrl-break interrupt handler */
{

i_disable();
printf("\nStill online.\n");
return(0);

}

/***
Set the port number to use

***/
int SetPort(int Port)
{

int Offset, far *RS232_Addr;
switch (Port)
{ /* Sort out the base address */

Wed Jun 25 10:18:44 1995 Page 4send.c
case COM1 : Offset = 0x0000;

break;
case COM2 : Offset = 0x0002;

break;
default : return (-1);

}
RS232_Addr = MK_FP(0x0040, Offset); /* Find out where the port is. */
if (*RS232_Addr == NULL) return (-1);/* If NULL then port not used. */
portbase = *RS232_Addr; /* Otherwise set portbase */
return (0);

}

/***
This routine sets the speed; will accept funny baud rates.
Setting the speed requires that the DLAB be set on.

***/
int SetSpeed(int Speed)
{

char c;
int divisor;
if (Speed == 0) /* Avoid divide by zero */

return (-1);
else

divisor = (int) (115200L/Speed);
if (portbase == 0)

return (-1);
disable();
c = inportb(portbase + LCR);
outportb(portbase + LCR, (c | 0x80)); /* Set DLAB */
outportb(portbase + DLL, (divisor & 0x00FF));
outportb(portbase + DLH, ((divisor >> 8) & 0x00FF));
outportb(portbase + LCR, c); /* Reset DLAB */
enable();
return (0);

}

/***
Set other communications parameters

***/
int SetOthers(int Parity, int Bits, int StopBit)
{

int setting;
if (portbase == 0) return (-1);
if (Bits < 5 || Bits > 8) return (-1);
if (StopBit != 1 && StopBit != 2) return (-1);
if (Parity != NO_PARITY && Parity != ODD_PARITY && Parity != EVEN_PARITY)

return (-1);
setting = Bits-5;
setting |= ((StopBit == 1) ? 0x00 : 0x04);
setting |= Parity;
disable();
outportb(portbase + LCR, setting);
enable();
return (0);

}

/***
Set up the port

***/
int SetSerial(int Port, int Speed, int Parity, int Bits, int StopBit)
{

if (SetPort(Port)) return (-1);
if (SetSpeed(Speed)) return (-1);
if (SetOthers(Parity, Bits, StopBit)) return (-1);
return (0);

}

Wed Jun 25 10:18:44 1995 Page 5send.c

/***
Main program

***/
main(int argc, char **argv)
{

int port;
int speed;
int parity = NO_PARITY;
int bits = 8;
int stopbits = 1;
int c = FALSE;
int done = FALSE;
unsigned int count = 0;
unsigned int i = 0;
FILE *in;
unsigned char data;

if (argc < 4)
{

printf("\nDSP RAM downloader by Steven J. Merrifield\n");
printf("Syntax : %s <ComPort> <BaudRate> <filename>\n",argv[0]);
return(99);

}
port = atoi(argv[1]);
if ((port < 1) | (port > 2)) /* Also covers if port == 0 */
{

printf("ComPort must be either 1 or 2\n");
return(99);

}
if (port==1) port = COM1; else port = COM2;
speed = atoi(argv[2]);
if ((speed < 150) | (speed > 19200)) /* Also covers speed == 0 */
{

printf("BaudRate must be in the range 150-19200\n");
return(99);

}
if (SetSerial(port, speed, parity, bits, stopbits) != 0)
{

printf("Serial port setup error.\n");
return (99);

}
initserial();
ctrlbrk(c_break);
in = fopen(argv[3],"rb");
if (!in)
{

printf("Error opening file.\n");
return(99);

}
/***************************************/

clrscr();
printf("¿¿

¿¿¿¿¿¿¿¿¿¿");
printf("¿ DSP RAM downloader v1.3 Sept 1994 by Steven J. Merrifi

eld ¿");
printf("¿¿

¿¿¿¿¿¿¿¿¿¿\n");
textcolor(14);
printf("Filename : "); cprintf("%s",strupr(argv[3]));
printf("\nCOM port : "); cprintf("COM%d",port);
printf("\nBaud rate : "); cprintf("%d",speed);
printf("\n\nPress <ENTER> to Start, or <ESC> to Cancel ");
if ((c=getch())==27) done = TRUE;
printf("\n\nSending data now : ");

/***************************************/

Wed Jun 25 10:18:44 1995 Page 6send.c
fseek(in,0,0); /* Check length of file, so we can subtract eof char */
while (!feof(in) & !done)
{

fread(&data,1,1,in);
count ++;

}
count--; /* subtract eof character */
fseek(in,0,0);
while ((i<count) & (!SError) & (!done)) /* loop until eof or error */
{

fread(&data,1,1,in);
SerialOut(data);
delay(5); /* get overrun errors at ’C25 end without this delay */
c = getccb() & 0x00FF;
cprintf("*");
if (kbhit()) /* test if keypressed during download */
{

if ((c=getch()) == 27) /* was it <ESC> */
{

done = TRUE;
printf("\nDownload aborted by user!");

}
}

/* printf("Byte = %4u DataSent = %2x DataReceived = %2x\n",i,data,c); */
/* if (data != c) SError = ECHOTEST; */

i++;
}
fclose(in);
printf("\nSent %u bytes (%X hex).\n",i,i);
/* Check for errors */
switch (SError)
{

case NOERROR: closeserial();
return (0);

case BUFOVFL: printf("\nBuffer Overflow.\n");
closeserial();
return (99);

case ECHOTEST: printf("\nEcho test error.\n");
closeserial();
return(99);

default: printf("\nUnknown Error, SError = %d\n", SError);
closeserial();
return (99);

}
}

Wed Jun 25 10:18:44 1995 Page 1serial.h
/*---*

FILENAME: SERIAL.H

Some definitions used by SERIAL.C

--/

#define COM1 1
#define COM2 2
#define COM1BASE 0x3F8 /* Base port address for COM1 */
#define COM2BASE 0x2F8 /* Base port address for COM2 */

/*
The 8250 UART has 10 registers accessible through 7 port addresses.
Here are their addresses relative to COM1BASE and COM2BASE. Note
that the baud rate registers, (DLL) and (DLH) are active only when
the Divisor-Latch Access-Bit (DLAB) is on. The (DLAB) is bit 7 of
the (LCR).

o TXR Output data to the serial port.
o RXR Input data from the serial port.
o LCR Initialize the serial port.
o IER Controls interrupt generation.
o IIR Identifies interrupts.
o MCR Send contorl signals to the modem.
o LSR Monitor the status of the serial port.
o MSR Receive status of the modem.
o DLL Low byte of baud rate divisor.
o DHH High byte of baud rate divisor.

*/
#define TXR 0 /* Transmit register (WRITE) */
#define RXR 0 /* Receive register (READ) */
#define IER 1 /* Interrupt Enable */
#define IIR 2 /* Interrupt ID */
#define LCR 3 /* Line control */
#define MCR 4 /* Modem control */
#define LSR 5 /* Line Status */
#define MSR 6 /* Modem Status */
#define DLL 0 /* Divisor Latch Low */
#define DLH 1 /* Divisor latch High */

/*---*
Bit values held in the Line Control Register (LCR).

bit meaning
--- -------
0-1 00=5 bits, 01=6 bits, 10=7 bits, 11=8 bits.
2 Stop bits.
3 0=parity off, 1=parity on.
4 0=parity odd, 1=parity even.
5 Sticky parity.
6 Set break.
7 Toggle port addresses.

---/
#define NO_PARITY 0x00
#define EVEN_PARITY 0x18
#define ODD_PARITY 0x08

/*---*
Bit values held in the Line Status Register (LSR).

bit meaning
--- -------
0 Data ready.
1 Overrun error - Data register overwritten.

Wed Jun 25 10:18:44 1995 Page 2serial.h
2 Parity error - bad transmission.
3 Framing error - No stop bit was found.
4 Break detect - End to transmission requested.
5 Transmitter holding register is empty.
6 Transmitter shift register is empty.
7 Time out - off line.

---/
#define RCVRDY 0x01
#define OVRERR 0x02
#define PRTYERR 0x04
#define FRMERR 0x08
#define BRKERR 0x10
#define XMTRDY 0x20
#define XMTRSR 0x40
#define TIMEOUT 0x80

/*---*
Bit values held in the Modem Output Control Register (MCR).

bit meaning
--- -------
0 Data Terminal Ready. Computer ready to go.
1 Request To Send. Computer wants to send data.
2 auxillary output #1.
3 auxillary output #2.(Note: This bit must be

set to allow the communications card to send
interrupts to the system)

4 UART ouput looped back as input.
5-7 not used.

--/
#define DTR 0x01
#define RTS 0x02
#define MC_INT 0x08

/*--*
Bit values held in the Modem Input Status Register (MSR).

bit meaning
--- -------
0 delta Clear To Send.
1 delta Data Set Ready.
2 delta Ring Indicator.
3 delta Data Carrier Detect.
4 Clear To Send.
5 Data Set Ready.
6 Ring Indicator.
7 Data Carrier Detect.

--/
#define CTS 0x10
#define DSR 0x20

/*--*
Bit values held in the Interrupt Enable Register (IER).

bit meaning
--- -------
0 Interrupt when data received.
1 Interrupt when transmitter holding reg. empty.
2 Interrupt when data reception error.
3 Interrupt when change in modem status register.
4-7 Not used.

--/
#define RX_INT 0x01

/*--*
Bit values held in the Interrupt Identification Register (IIR).

Wed Jun 25 10:18:44 1995 Page 3serial.h
bit meaning
--- -------
0 Interrupt pending
1-2 Interrupt ID code

00=Change in modem status register,
01=Transmitter holding register empty,
10=Data received,
11=reception error, or break encountered.

3-7 Not used.
--/
#define RX_ID 0x04
#define RX_MASK 0x07

/*
These are the port addresses of the 8259 Programmable Interrupt
Controller (PIC).

*/
#define IMR 0x21 /* Interrupt Mask Register port */
#define ICR 0x20 /* Interrupt Control Port */

/*
An end of interrupt needs to be sent to the Control Port of
the 8259 when a hardware interrupt ends.

*/
#define EOI 0x20 /* End Of Interrupt */

/*
The (IMR) tells the (PIC) to service an interrupt only if it
is not masked (FALSE).

*/
#define IRQ3 0xF7 /* COM2 */
#define IRQ4 0xEF /* COM1 */
¿pt */

/*
The (IMR) tells the (PIC) to service an interrupt only if it
is not masked (FALSE).

*/
#define IRQ3 0xF7 /* COM2 */
#define IRQ4 0xEF /* COM1 */

Wed Jun 25 10:18:44 1995 Page 1dtmf.c
/***

REVISED VERSION !!! - This document contains code which was added after
submission of the original thesis. Where there are discrepancies between
this and the original version, the code presented here should take
precedence.

This program handles both the encoding and decoding of the DTMF codes
to and from the TMS320C25 DSP board. It reads characters from the keyboard
and sends them via the serial port to the C25 which generates the DTMF
tone. It also reads back the decoded tone from the C25 and displays it on
the screen.

***/

#include <dos.h>
#include <conio.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include "serial.h" /* communication routines */

#define FALSE 0
#define TRUE !FALSE

#define NOERROR 0
#define BUFOVFL 1 /* buffer overflow error */
#define RET_ERROR 99 /* all return(RET_ERROR); statements */

#define SBUFSIZ 1024 /* serial buffer size */

#define PadX 25 /* X position of keypad */
#define PadY 6 /* Y position of keypad */
#define back_color 1 /* color of background */
#define key_color 14 /* color of digits in keypad */
#define pad_color 15 /* color of key & keypad borders */

int key_count = 0, /* number of keys pressed during encoding */
send = FALSE, /* flag for encoding routine */
receive = FALSE, /* flag for decoding routine */
quit = FALSE, /* flag to quit the current routine */
EXITDOS = FALSE; /* flag to quit the whole program */

void init_screen(void); /* draws a fancy heading and background */
void ask_routine(void); /* menu which prompts for the required routine */
void decode(void); /* decoding routine */
void encode(void); /* encoding routine */

void interrupt(*oldvects[2])();

int SError = NOERROR;
int portbase = 0;
static char ccbuf[SBUFSIZ];
unsigned int startbuf = 0;
unsigned int endbuf = 0;

/**
Handle communications interrupts and put them in ccbuf

**/
void interrupt com_int(void)
{

disable();
if ((inportb(portbase + IIR) & RX_MASK) == RX_ID)
{

if (((endbuf + 1) & SBUFSIZ - 1) == startbuf) SError = BUFOVFL;
ccbuf[endbuf++] = inportb(portbase + RXR);
endbuf &= SBUFSIZ - 1;

Wed Jun 25 10:18:44 1995 Page 2dtmf.c
}
/* Signal end of hardware interrupt */
outportb(ICR, EOI);
enable();

}

/***
Output a character to the serial port

***/
int SerialOut(char x)
{

long int timeout = 0x0000FFFFL;
outportb(portbase + MCR, MC_INT | DTR | RTS);
/* Wait for Clear To Send from modem */
while ((inportb(portbase + MSR) & CTS) == 0)
if (!(--timeout))

return (-1);
timeout = 0x0000FFFFL;
/* Wait for transmitter to clear */
while ((inportb(portbase + LSR) & XMTRDY) == 0)
if (!(--timeout))

return (-1);
disable();
outportb(portbase + TXR, x);
enable();
return (0);

}

/***
This routine returns the current value in the buffer

***/
int getccb(void)
{

int res;
if (endbuf == startbuf)

return (-1);
res = (int) ccbuf[startbuf++];
startbuf %= SBUFSIZ;
return (res);

}

/***
Install our functions to handle communications

***/
void setvects(void)
{

oldvects[0] = getvect(0x0B);
oldvects[1] = getvect(0x0C);
setvect(0x0B, com_int);
setvect(0x0C, com_int);

}

/***
Uninstall our vectors before exiting the program

***/
void resvects(void)
{

setvect(0x0B, oldvects[0]);
setvect(0x0C, oldvects[1]);

}

/***
Turn on communications interrupts

***/
void i_enable(int pnum)
{

Wed Jun 25 10:18:44 1995 Page 3dtmf.c
int c;
disable();
c = inportb(portbase + MCR) | MC_INT;
outportb(portbase + MCR, c);
outportb(portbase + IER, RX_INT);
c = inportb(IMR) & (pnum == COM1 ? IRQ4 : IRQ3);
outportb(IMR, c);
enable();

}

/***
Turn off communications interrupts

***/
void i_disable(void)
{

int c;
disable();
c = inportb(IMR) | ~IRQ3 | ~IRQ4;
outportb(IMR, c);
outportb(portbase + IER, 0);
c = inportb(portbase + MCR) & ~MC_INT;
outportb(portbase + MCR, c);
enable();

}

/***
Tell DSP board that we’re ready to go

***/
void comm_on(void)
{

int c, pnum;
pnum = (portbase == COM1BASE ? COM1 : COM2);
i_enable(pnum);
c = inportb(portbase + MCR) | DTR | RTS;
outportb(portbase + MCR, c);

}

/***
Misc functions

***/
void comm_off(void)
{

i_disable();
outportb(portbase + MCR, 0);

}

void initserial(void)
{

endbuf = startbuf = 0;
setvects();
comm_on();

}

void closeserial(void)
{

comm_off();
resvects();

}

int c_break(void) /* Ctrl-break interrupt handler */
{

i_disable();
printf("\nWarning! Ctrl-Break pressed... still online.\n");
return(0);

}

Wed Jun 25 10:18:44 1995 Page 4dtmf.c
/***

Set the port number to use
***/
int SetPort(int Port)
{

int Offset, far *RS232_Addr;
switch (Port)
{ /* Sort out the base address */

case COM1 : Offset = 0x0000; break;
case COM2 : Offset = 0x0002; break;
default : return (-1);

}
RS232_Addr = MK_FP(0x0040, Offset); /* Find out where the port is. */
if (*RS232_Addr == NULL) return (-1);/* If NULL then port not used. */
portbase = *RS232_Addr; /* Otherwise set portbase */
return (0);

}

/***
This routine sets the speed; will accept funny baud rates.
Setting the speed requires that the DLAB be set on.

***/
int SetSpeed(int Speed)
{

char c;
int divisor;
if (Speed == 0) /* Avoid divide by zero */

return (-1);
else

divisor = (int) (115200L/Speed);
if (portbase == 0)

return (-1);
disable();
c = inportb(portbase + LCR);
outportb(portbase + LCR, (c | 0x80)); /* Set DLAB */
outportb(portbase + DLL, (divisor & 0x00FF));
outportb(portbase + DLH, ((divisor >> 8) & 0x00FF));
outportb(portbase + LCR, c); /* Reset DLAB */
enable();
return (0);

}

/***
Set other communications parameters

***/
int SetOthers(int Parity, int Bits, int StopBit)
{

int setting;
if (portbase == 0) return (-1);
if (Bits < 5 || Bits > 8) return (-1);
if (StopBit != 1 && StopBit != 2) return (-1);
if (Parity != NO_PARITY && Parity != ODD_PARITY && Parity != EVEN_PARITY)

return (-1);
setting = Bits-5;
setting |= ((StopBit == 1) ? 0x00 : 0x04);
setting |= Parity;
disable();
outportb(portbase + LCR, setting);
enable();
return (0);

}

/***
Set up the port

***/
int SetSerial(int Port, int Speed, int Parity, int Bits, int StopBit)

Wed Jun 25 10:18:44 1995 Page 5dtmf.c
{

if (SetPort(Port)) return (-1);
if (SetSpeed(Speed)) return (-1);
if (SetOthers(Parity, Bits, StopBit)) return (-1);
return (0);

}

/***
End of serial handling and start of graphics/DTMF code - uses extended
ASCII characters and these may not print correctly on paper.

***/
void init_screen()
{

int i,j;
textbackground(0);
clrscr();
textcolor(15);
textbackground(back_color);
cprintf("¿¿¿

¿¿¿¿¿¿¿¿¿¿¿");
cprintf("¿ Electronics IV (Honours) Project 1994 - DTMF Encoder/Dec

oder ¿");
cprintf("¿ by Steven J. Merrifield

¿");
cprintf("¿¿¿

¿¿¿¿¿¿¿¿¿¿¿");
for (i=5;i<25;i++)
for (j=1;j<81;j++)
{

gotoxy(j,i);
cprintf("¿"); /* ASCII 176 - may not print correctly on paper */

}
}

/***
Menu screen which waits for a response - uses extended ASCII characters
and these may not print correctly on paper.

***/
void ask_routine()
{

int x = 22, y = 10;
char c;
send = FALSE;
receive = FALSE;
EXITDOS = FALSE;
gotoxy(x,y); cprintf(" ¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿ ");
gotoxy(x,y+1); cprintf(" ¿ 1. Encode (send) DTMF tones ¿ ");
gotoxy(x,y+2); cprintf(" ¿ 2. Decode (receive) DTMF tones ¿ ");
gotoxy(x,y+3); cprintf(" ¿ 3. Quit to DOS ¿ ");
gotoxy(x,y+4); cprintf(" ¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿ ");
gotoxy(x+4,y+6); cprintf(" Enter your choice (1-3) : ");
gotoxy(x+31,y+6); /* put cursor at prompt postion */
do
{ /* There’s probably a better way to do this.... */

c = getch();
} while ((c != 49) & (c != 50) & (c != 51));

switch (c)
{

case 49: send = TRUE; break; /* key = ’1’ */
case 50: receive = TRUE; break; /* key = ’2’ */
case 51: EXITDOS = TRUE; break; /* key = ’3’ */

}
}

/***

Wed Jun 25 10:18:44 1995 Page 6dtmf.c
DTMF decoding section - uses extended ASCII characters.

***/
void decode()
{

int ch, key, x=12, y=10;
init_screen();
gotoxy(x,y); cprintf(" ¿¿¿

¿ ");
gotoxy(x,y+1); cprintf(" ¿ Received number :

¿ ");
gotoxy(x,y+2); cprintf(" ¿¿¿

¿ ");
gotoxy(x+21,y+1); /* put cursor at prompt postion */
quit = FALSE;
while ((!SError) & (!quit))
{

ch = getccb(); /* read char from serial port buffer */
if (ch != -1)
{

switch(ch)
{

case 85: key = ’1’; break; /* DSP end sends 55h to represent 0 */
case 1: key = ’2’; break;
case 2: key = ’3’; break;
case 3: key = ’A’; break;
case 16: key = ’4’; break;
case 17: key = ’5’; break;
case 18: key = ’6’; break;
case 19: key = ’B’; break;
case 32: key = ’7’; break;
case 33: key = ’8’; break;
case 34: key = ’9’; break;
case 35: key = ’C’; break;
case 48: key = ’*’; break;
case 49: key = ’0’; break;
case 50: key = ’#’; break;
case 51: key = ’D’; break;

}
textcolor(14);
cprintf("%c",key);
}
if (kbhit())

if (getch()==27) quit = TRUE;
}

}

/***
This function "flashes" a button when it is pressed

***/
int flash_key(char k)
{ int x,y;

switch(*strupr(&k)) {
case ’1’: x = PadX + 5; y = PadY + 2; break;
case ’4’: x = PadX + 5; y = PadY + 5; break;
case ’7’: x = PadX + 5; y = PadY + 8; break;
case ’2’: x = PadX + 12; y = PadY + 2; break;
case ’5’: x = PadX + 12; y = PadY + 5; break;
case ’8’: x = PadX + 12; y = PadY + 8; break;
case ’0’: x = PadX + 12; y = PadY + 11; break;
case ’3’: x = PadX + 19; y = PadY + 2; break;
case ’6’: x = PadX + 19; y = PadY + 5; break;
case ’9’: x = PadX + 19; y = PadY + 8; break;
case ’A’: x = PadX + 26; y = PadY + 2; break;
case ’B’: x = PadX + 26; y = PadY + 5; break;
case ’C’: x = PadX + 26; y = PadY + 8; break;
case ’D’: x = PadX + 26; y = PadY + 11; break;

Wed Jun 25 10:18:44 1995 Page 7dtmf.c
case ’*’: x = PadX + 5; y = PadY + 11; break;
case ’#’: x = PadX + 19; y = PadY + 11; break;
default: return(1); /* invalid key pressed */

}
key_count ++; /* so we know where to put the next character */
gotoxy(x-1,y);
textcolor(back_color);
textbackground(3);
cprintf(" %c ",k); /* flash the background color */
delay(200);
gotoxy(x-1,y);
textcolor(key_color);
textbackground(back_color);
cprintf(" %c ",k); /* then restore it to the way it was */
gotoxy(PadX+16+key_count,PadY+15);
cprintf("%c",k); /* write the key pressed at the correct spot */
return(0);

}

/***
DTMF encoding section - uses extended ASCII characters

***/
void encode()
{

int SendChar,ch;
char k;
init_screen();
textcolor(pad_color);
gotoxy(PadX,PadY); cprintf("¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿");
gotoxy(PadX,PadY+1); cprintf("¿ ¿¿¿¿¿ ¿¿¿¿¿ ¿¿¿¿¿ ¿¿¿¿¿ ¿");
gotoxy(PadX,PadY+2); cprintf("¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿");
gotoxy(PadX,PadY+3); cprintf("¿ ¿¿¿¿¿ ¿¿¿¿¿ ¿¿¿¿¿ ¿¿¿¿¿ ¿");
gotoxy(PadX,PadY+4); cprintf("¿ ¿¿¿¿¿ ¿¿¿¿¿ ¿¿¿¿¿ ¿¿¿¿¿ ¿");
gotoxy(PadX,PadY+5); cprintf("¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿");
gotoxy(PadX,PadY+6); cprintf("¿ ¿¿¿¿¿ ¿¿¿¿¿ ¿¿¿¿¿ ¿¿¿¿¿ ¿");
gotoxy(PadX,PadY+7); cprintf("¿ ¿¿¿¿¿ ¿¿¿¿¿ ¿¿¿¿¿ ¿¿¿¿¿ ¿");
gotoxy(PadX,PadY+8); cprintf("¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿");
gotoxy(PadX,PadY+9); cprintf("¿ ¿¿¿¿¿ ¿¿¿¿¿ ¿¿¿¿¿ ¿¿¿¿¿ ¿");
gotoxy(PadX,PadY+10); cprintf("¿ ¿¿¿¿¿ ¿¿¿¿¿ ¿¿¿¿¿ ¿¿¿¿¿ ¿");
gotoxy(PadX,PadY+11); cprintf("¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿");
gotoxy(PadX,PadY+12); cprintf("¿ ¿¿¿¿¿ ¿¿¿¿¿ ¿¿¿¿¿ ¿¿¿¿¿ ¿");
gotoxy(PadX,PadY+13); cprintf("¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿");
textcolor(key_color);
gotoxy(PadX+5,PadY+2); cprintf("1"); gotoxy(PadX+12,PadY+2); cprintf("2");
gotoxy(PadX+19,PadY+2); cprintf("3"); gotoxy(PadX+26,PadY+2); cprintf("A");
gotoxy(PadX+5,PadY+5); cprintf("4"); gotoxy(PadX+12,PadY+5); cprintf("5");
gotoxy(PadX+19,PadY+5); cprintf("6"); gotoxy(PadX+26,PadY+5); cprintf("B");
gotoxy(PadX+5,PadY+8); cprintf("7"); gotoxy(PadX+12,PadY+8); cprintf("8");
gotoxy(PadX+19,PadY+8); cprintf("9"); gotoxy(PadX+26,PadY+8); cprintf("C");
gotoxy(PadX+5,PadY+11); cprintf("*"); gotoxy(PadX+12,PadY+11); cprintf("0");
gotoxy(PadX+19,PadY+11); cprintf("#"); gotoxy(PadX+26,PadY+11); cprintf("D");
gotoxy(PadX-1,PadY+15);
textcolor(15);
cprintf(" Number to dial : ");
gotoxy(PadX+17,PadY+15);
quit = FALSE;
key_count = 0;
while ((!SError) & (!quit))
{

ch = getccb(); /* read char from serial port buffer */
if (ch != -1) putch(ch); /* if buffer is not empty, then write char */
k = getch();
flash_key(k);
switch(*strupr(&k))
{

case 27: quit = TRUE; break; /* key = ’ESC’ */

Wed Jun 25 10:18:44 1995 Page 8dtmf.c
case 48: SendChar = 0x00; break;
case 49: SendChar = 0x01; break;
case 50: SendChar = 0x02; break;
case 51: SendChar = 0x03; break;
case 52: SendChar = 0x04; break;
case 53: SendChar = 0x05; break;
case 54: SendChar = 0x06; break;
case 55: SendChar = 0x07; break;
case 56: SendChar = 0x08; break;
case 57: SendChar = 0x09; break;
case 65: SendChar = 0x0A; break;
case 66: SendChar = 0x0B; break;
case 67: SendChar = 0x0C; break;
case 68: SendChar = 0x0D; break;
case 42: SendChar = 0x0E; break; /* key = ’*’ */
case 35: SendChar = 0x0F; break; /* key = ’#’ */

}
if (k != 27) SerialOut(SendChar);
delay(5); /* get overrun errors at ’C25 end without this */

}
}

/***
Main program

**/
main(int argc, char **argv)
{

int port;
int speed;
int parity = NO_PARITY;
int data_bits = 8;
int stop_bits = 1;
if (argc < 3)
{

printf("DTMF encoder/decoder front end for TMS320C25 DSP board.\n");
printf("Syntax : %s <ComPort> <BaudRate>\n",argv[0]);
return(99);

}
port = atoi(argv[1]);
if ((port < 1) | (port > 2)) /* also covers if port == 0 (error) */
{

printf("Com port must be either 1 or 2\n");
return(RET_ERROR);

}
if (port==1) port = COM1; else port = COM2;
speed = atoi(argv[2]);
if ((speed < 150) | (speed > 19200)) /* also covers speed == 0 (error) */
{

printf("Baud rate must be in the range 150 - 19200\n");
return(RET_ERROR);

}
if (SetSerial(port, speed, parity, data_bits, stop_bits) != 0)
{

printf("Error setting up serial port.\n");
return (RET_ERROR);

}
initserial();
ctrlbrk(c_break);

do
{

init_screen();
ask_routine();
if (send == TRUE) encode();
if (receive == TRUE) decode();

} while (EXITDOS != TRUE);

Wed Jun 25 10:18:44 1995 Page 9dtmf.c

textcolor(7);
textbackground(0);
clrscr();
/* Check for errors */
switch (SError)
{

case NOERROR: closeserial();
return (0);

case BUFOVFL: printf("\nBuffer Overflow.\n");
closeserial();
return (RET_ERROR);

default: printf("\nUnknown Error, SError = %d\n", SError);
closeserial();
return (RET_ERROR);

}
}

1

1

2

2

3

3

4

4

A A

B B

C C

D D

Title

Number RevisionSize

A4

Date: 19-Jun-1995 Sheet of
File: C:\TEMP2\DSP-CHIP.S01 Drawn By:

A0
K1

A1
K2

A2
L3

A3
K3

A4
L4

A5
K4

A6
L5

A7
K5

A8
K6

A9
L7

A10
K7

A11
L8

A12
K8

A13
L9

A14
K9

A15
L10

D0
F1

D1
E2

D2
E1

D3
D2

D4
D1

D5
C2

D6
C1

D7
B2

D8
A2

D9
B3

D10
A3

D11
B4

D12
A4

D13
B5

D14
A5

D15
B6

~RS
A8

MP/~MC
A6

READY
B8

V
SS

B
1

V
SS

L
2

V
SS

K
11

V
C

C
A

10

V
C

C
B

10

V
C

C
L

6

V
C

C
H

2

~IACK
B11

~INT0
G1

~INT1
G2

~INT2
H1

~DS
K10

~PS
J10

~IS
J11

~STRB
H10

R/~W
H11

~HOLD
A7

~HOLDA
E10

~BR
G11

X1
G10

CLKIN
F11

CLK1
C11

CLK2
D10

CLKR
B9

DR
J1

FSR
J2

CLKX
A9

DX
E11

FSX
F10

~MSC
C10

~BIO
B7

XF
D11

~SYNC
F2

U1
TMS320C25

CLKOUT2
CLKOUT1
CPU CLK

READY
VCC
~RESET

D0-D15

A0-A15

VCC

STEVEN J. MERRIFIELD

SIGNAL PROCESSOR
TMS320C25 DIGITAL

VCC
VCC

~DS
~PS
~IS

~STRB
R/~W

VCC

VCC

VCC

CLKR
DR

FSR

CLKX
DX

FSX

XF

~MSC

VCC

1

1

2

2

3

3

4

4

A A

B B

C C

D D

Title

Number RevisionSize

A4

Date: 19-Jun-1995 Sheet of
File: C:\TEMP2\ROM.S01 Drawn By:

1A1
2

1A2
4

1A3
6

1A4
8

2A1
11

2A2
13

2A3
15

2A4
17

1Y1
18

1Y2
16

1Y3
14

1Y4
12

2Y1
9

2Y2
7

2Y3
5

2Y4
3

1G
1

2G
19

V
C

C
20

G
N

D
10

U3
74F244

1A1
2

1A2
4

1A3
6

1A4
8

2A1
11

2A2
13

2A3
15

2A4
17

1Y1
18

1Y2
16

1Y3
14

1Y4
12

2Y1
9

2Y2
7

2Y3
5

2Y4
3

1G
1

2G
19

V
C

C
20

G
N

D
10

U5
74F244

A0
10

A1
9

A2
8

A3
7

A4
6

A5
5

A6
4

A7
3

A8
25

A9
24

A10
21

A11
23

A12
2

A13
26

A14
27

CE
20

OE
22

VPP
1

D0
11

D1
12

D2
13

D3
15

D4
16

D5
17

D6
18

D7
19

VCC
28

GND
14

U2
27C256

A0
10

A1
9

A2
8

A3
7

A4
6

A5
5

A6
4

A7
3

A8
25

A9
24

A10
21

A11
23

A12
2

A13
26

A14
27

CE
20

OE
22

VPP
1

D0
11

D1
12

D2
13

D3
15

D4
16

D5
17

D6
18

D7
19

VCC
28

GND
14

U4
27C256

A14
A13
A12
A11
A10
A9
A8
A7
A6
A5
A4
A3
A2
A1

A14
A13
A12
A11
A10
A9
A8
A7
A6
A5
A4
A3
A2
A1

D14
D13
D12

D11
D10
D9

D6
D5
D4

D3
D2
D1

EPROM

D15

D8

D7

A0

A0

A0-A14

D0-D15

~ROMCS

~ROMREAD

VCC

VCC

D0

CIRCUITRY

1

1

2

2

3

3

4

4

A A

B B

C C

D D

Title

Number RevisionSize

A4

Date: 19-Jun-1995 Sheet of
File: C:\TEMP2\PRAM.S01 Drawn By:

A0
19

A1
20

A2
21

A3
22

A4
23

A5
1

A6
2

A7
3

A8
4

A9
5

A10
6

A11
7

A12
8

A13
9

I/O0
14

I/O1
15

I/O2
16

1/O3
17

~CE
10

~WE
13

~OE
11

U9
CY7C166

A0
19

A1
20

A2
21

A3
22

A4
23

A5
1

A6
2

A7
3

A8
4

A9
5

A10
6

A11
7

A12
8

A13
9

I/O0
14

I/O1
15

I/O2
16

1/O3
17

~CE
10

~WE
13

~OE
11

U8
CY7C166

A0
19

A1
20

A2
21

A3
22

A4
23

A5
1

A6
2

A7
3

A8
4

A9
5

A10
6

A11
7

A12
8

A13
9

I/O0
14

I/O1
15

I/O2
16

1/O3
17

~CE
10

~WE
13

~OE
11

U7
CY7C166

A0
19

A1
20

A2
21

A3
22

A4
23

A5
1

A6
2

A7
3

A8
4

A9
5

A10
6

A11
7

A12
8

A13
9

I/O0
14

I/O1
15

I/O2
16

1/O3
17

~CE
10

~WE
13

~OE
11

U6
CY7C166

PROGRAM RAM

D15
D14
D13
D12

D11
D10
D9
D8

D7
D6
D5
D4

D3
D2
D1
D0

PRAMCS FROM PAL

R/~W FROM 'C25

D0-D15

A0-A13

1

1

2

2

3

3

4

4

A A

B B

C C

D D

Title

Number RevisionSize

A4

Date: 19-Jun-1995 Sheet of
File: C:\TEMP2\DRAM.S01 Drawn By:

A0
19

A1
20

A2
21

A3
22

A4
23

A5
1

A6
2

A7
3

A8
4

A9
5

A10
6

A11
7

A12
8

A13
9

I/O0
14

I/O1
15

I/O2
16

1/O3
17

~CE
10

~WE
13

~OE
11

U13
CY7C166

A0
19

A1
20

A2
21

A3
22

A4
23

A5
1

A6
2

A7
3

A8
4

A9
5

A10
6

A11
7

A12
8

A13
9

I/O0
14

I/O1
15

I/O2
16

1/O3
17

~CE
10

~WE
13

~OE
11

U12
CY7C166

A0
19

A1
20

A2
21

A3
22

A4
23

A5
1

A6
2

A7
3

A8
4

A9
5

A10
6

A11
7

A12
8

A13
9

I/O0
14

I/O1
15

I/O2
16

1/O3
17

~CE
10

~WE
13

~OE
11

U11
CY7C166

A0
19

A1
20

A2
21

A3
22

A4
23

A5
1

A6
2

A7
3

A8
4

A9
5

A10
6

A11
7

A12
8

A13
9

I/O0
14

I/O1
15

I/O2
16

1/O3
17

~CE
10

~WE
13

~OE
11

U10
CY7C166

DATA RAM

D15
D14
D13
D12

D11
D10
D9
D8

D7
D6
D5
D4

D3
D2
D1
D0

DRAMCS FROM PAL

R/~W FROM 'C25

D0-D15

A0-A13

1

1

2

2

3

3

4

4

5

5

6

6

7

7

8

8

A A

B B

C C

D D

E E

F F

Title

Number RevisionSize

A3

Date: 19-Jun-1995 Sheet of
File: C:\TEMP2\SER-INT.S01 Drawn By:

1
14
2

15
3

16
4

17
5

18
6

19
7

20
8

21
9

22
10
23
11
24
12
25
13

D1
DB25

G
N

D
4

V
C

C
2

6

D0
27

TxD
19

D1
28

D2
1

TxRDY
15

D3
2

TxCLK
9

D45 TxEMPT 18

D56

D67 RxD 3

D78

RxRDY 14

CS11 RxCLK 25

RD13 SYNDET 16

WR10

C/D12 DSR 22

DTR 24

CLK
20

CTS
17

RESET
21

RTS
23

U15
8251A

T1OUT
14

R1IN
13

T2OUT
7

R2IN 8

C1+ 1

C1- 3

VCC 16

V+
2

GND
15

V-6

C2-5

C2+4

R2OUT9 T2IN
10

R1OUT
12 T1IN
11

U18
MAX232

C50
10

C51
10

C48
10

C49
10

D0
3

Q0
2

D1
4

Q1
5

D2
7

Q2
6

D3
8

Q3
9

D4
13

Q4
12

D5
14

Q5
15

D6
17

Q6
16

D718 Q7 19

OE1

LE11

U16
74LS373

A0
2

A1
3

A2
4

A3
5

A46

A57

A68

A79

B0
18

B1
17

B2
16

B3
15

B4 14

B5 13

B6 12

B7 11

E19

DIR1

U17
74LS245

C1-C2
10uF Tant

C3-C18
0.22uF

C19-C47
0.1uF

D2
IN4004

1
2
3
4

J2

DIG PWR

VCC

VCC

Tx/Rx CLK UART / RS232

D0-D7

D0
D1
D2
D3
D4
D5
D6
D7

D0
D1
D2
D3
D4
D5
D6
D7

UD0
UD1
UD2
UD3
UD4
UD5
UD6
UD7

UD0
UD1
UD2
UD3
UD4
UD5
UD6
UD7

UD0
UD1
UD2
UD3
UD4
UD5
UD6
UD7

A0

UART CLK

RESET

~UARTCS
~UARTR
~UARTW

R/~W
LE FROM PAL

DIG GND

DIG VCC

DECOUPLING CAPS

1

1

2

2

3

3

4

4

A A

B B

C C

D D

Title

Number RevisionSize

A4

Date: 19-Jun-1995 Sheet of
File: C:\TEMP2\22V10S.S01 Drawn By:

CLK
1
2
3
4
5
6
7
8
9

10
11

GND
12 13

14
15
16
17
18
19
20
21
22
23

VCC
24

U19
22V10

CLK
1
2
3
4
5
6
7
8
9

10
11

GND
12 13

14
15
16
17
18
19
20
21
22
23

VCC
24

U14
22V10

R4 R5 R6 R7

LED0-LED3

DECODE

IOMAP

CLKOUT1
~STRB
~IS
R/~W
D0
A0
A1
A2

CLKOUT2
~PS
~DS

A15
~MSC

~IS
R/~W
~STRB
A2

VCC
~LE (TO '373)
~UARTW

~UARTR
~UARTCS

VCC
READY (TO 'C25)

/ROMCS
/PRAMCS
/DRAMCS
/ROMREAD

Q1
Q2
Q3
/UARTWT
/ONEWT

THESE FIVE LINES ARE
FOR INTERNAL OP'S
AND TESTING ONLY

VCC

4 x 270PALS

1

1

2

2

3

3

4

4

A A

B B

C C

D D

Title

Number RevisionSize

A4

Date: 19-Jun-1995 Sheet of
File: C:\TEMP2\AIC.S01 Drawn By:

D1
BAT85

0u47

220k

W/B
13

MR CLK
6

~FSX
14

DX
12

~FSR
4

DR
5

SH CLK
10

VCC+
20

AGND

VCC-
19

REF
8

~RESET
2

DGND
9

VDD
7

IN+
26

IN-
25

OUT+
22

OUT-
21

TLC32042

CLK
3

D
2

SD
4

C
D

1

Q
5

Q
6

74LS74

VCC

VCC

ANALOG INTERFACE

18
17

+5V ANALOG

ANALOG GND

-5V ANALOG

+5V DIGITAL

DIGITAL GND

VCC (DIG)

NON-INV. INPUT
INVERTING INPUT

NON-INV. OUTPUT
INVERTED OUTPUT

ALL UNMARKED CAPS
ARE 0.1uF CERAMIC

CLKOUT 1
FSX
DX
FSR
DR
CLKR
CLKX

'C25

1

1

2

2

3

3

4

4

A A

B B

C C

D D

Title

Number RevisionSize

A4

Date: 19-Jun-1995 Sheet of
File: C:\TEMP2\CLOCKS.S01 Drawn By:

VCC

R1
1M

C52
0.47uF

SW1

1 2

U22A
74LS14

3 4

U22B
74LS14

CLK
10

RST
11

Q1
9

Q2
7

Q3
6

Q4
5

Q5
3

Q6
2

Q7
4

Q8
13

Q9
12

Q10
14

Q11
15

Q12
1

VCC
16

GND
8

U21
74HC4040

5 6

U20C
74LS04

3 4

U20B
74LS04

1 2

U20A
74LS04

1
2
3
4
5
6
7
8

9
10
11
12
13
14
15
16

SW2
DIPSW8

X2
2.4576MHz

R2
470R

R3
470R

C53
0.1uF

X1
40.000MHz

RESET CIRCUITRY

RESET

~RESET

VCC

Tx/Rx CLK (x16)19200
9600
4800
2400
1200
600
300
150

SERIAL BAUD CLOCK

9

16

8

UART CLK INPUT

TMS320C25 CLKIN

SYSTEM CLOCK

VCC

1

1

2

2

3

3

4

4

A A

B B

C C

D D

Title

Number RevisionSize

A4

Date: 19-Jun-1995 Sheet of
File: C:\TEMP2\AMPS.S01 Drawn By:

SPEAKER

HEADER

1
2
3
4

4PIN

3

2

47

5

618

LM386

3

2

4 7

5

6 1 8

LM386

4.7k

10

0.1u 0.01u

10u

+5

-5

10k

10u

0.1u

10k0.1u

0.01u 0.1u

10

4.7k

+5

-5

10u

ANALOG AMPLIFIERS

FROM AIC 22

TO AIC 26

INPUT

OUTPUT

